Journal of Applied Optics, Volume. 46, Issue 3, 571(2025)
Design of ground-based dual-band asymmetric spatial heterodyne wind interferometer
[1] WANG Li. Study on wind measurement of atmosphere by interferometry technology[D](2007).
[2] TANG Yuanhe, ZHANG Chunmin[M]. Satellite remote sensing passive detection of upper atmosphere wind field(2011).
[3] TANG Yuanhe, ZHANG Chunmin, CHEN Guangde et al. Research progress on key technologies for satellite remote sensing detection of wind fields in the upper atmosphere[J]. Progress in Physics, 25, 142-152(2005).
[4] ZHANG Chunmin, XIANG Libin, ZHAO Baochang et al. Measurement of velocity and temperature of wind field in upper atmosphere by Fabry-Perot interferometer[J]. Journal of Xi'an Jiaotong University, 34, 97-99(2000).
[5] ZHANG Xuanni. Research on Michelson interferometer for wind imaging[J]. Value Engineering, 29, 250-252(2010).
[6] SHI Dalian, BAI Qinglan, FENG Yutao et al. On-board calibration technology of spaceborne detection spectrometer for atmospheric wind field and temperature field[J]. Journal of Applied Optics, 32, 926-930(2011).
[7] ENGLERT C R, HARLANDER J M, BABCOCK D D, et a1. Doppler asymmetric spatial heterodyne spectroscopy (DASH): an innovative concept for measuring winds in planetary atmospheres[J]. SPIE: The International Society for Optical Engineering, 6303, 9(2007).
[8] ENGLERT C R, BABCOCK D D, HARLANDER J M et al. Doppler asymmetric spatial heterodyne spectroscopy(DASH): concept and experimental demonstration[J]. Applied Optics, 46, 7297-7307(2007).
[9] HARLANDER J M, ENGLERT C R, BABCOCK D D et al. Design and laboratory tests of a Doppler asymmetric spatial heterodyne (DASH) interferometer for upper atmospheric wind and temperature observations[J]. United States: Optics Express, 18, 26430-26440(2010).
[10] BABCOCK D D, HARLANDER J M, ENGLERT C R, et a1. Doppler asymmetric spatial heterodyne (DASH) interferometer from flight concept to field campaign[C](2011).
[11] ENGLERT C R, HARLANDER J M, BROWN C M et al. Michelson interferometer for global high-resolution thermospheric imaging(MIGHTI): instrument design and calibration[J]. Space Science Reviews, 212, 553-584(2017).
[12] HARLANDER J M, ENGLERT C R, BROWN C M et al. Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI): monolithic interferometer design and test[J]. Space Science Reviews, 212, 601-613(2017).
[13] MARR K D, MORROW W H, BROWN C M et al. Calibration lamp design, characterization, and implementation for the Michelson interferometer for global high-resolution thermospheric imaging instrument on the ionospheric connectionsatellite[J]. Optical Engineering, 58, 054104(2019).
[14] MAKELA J J, BAUGHMAN M, NAVARRO L A et al. Validation of ICON-MIGHTI thermospheric wind observations: 1. nighttime red-line ground-based fabryperot interferometers[J]. Journal of Geophysical Research: Space Physics, 126, e2020JA028726(2021).
[15] HARDING B J, CHAU J L, HE M et al. Validation of ICON-MIGHTI thermospheric wind observations: 2. green-line comparisons to specular meteor radars[J]. Journal of Geophysical Research: Space Physics, 126, e2020JA02894(2021).
[16] HARLANDER J M, ENGLERT C R. Laboratory demonstration of mini-MIGHTI: a prototype sensor for thermospheric red-line(630 nm) neutral wind measurements from a 6U CubeSat[J]. Journal of Atmospheric and Solar Terrestrial Physics, 207, 10536(2020).
[17] SOLHEIM B, BROWN S, SIORIS C et al. SWIFT-DASH: spatial heterodyne spectroscopy approach to stratospheric wind and ozone measurement[J]. Atmosphere Ocean, 53, 50-57(2015).
[18] ENGLERT C R, BROWN C M, BACH B et al. High-efficiency echelle gratings for MIGHTI, the spatial heterodyne interferometers for the ICON mission[J]. Applied Optics, 56, 2090(2017).
[19] FEI Xiaoyun, FENG Yutao, BAI Qinglan et al. Optical system design of a co-path Doppler asymmetric spatial heterodyne interferometer with two fields of view[J]. Acta Optica Sinica, 35, 298-305(2015).
[20] FEI Xiaoyun. Basic study on a co-path Doppler asymmetric spatial heterodyne spectroscopy interferometer with two fields of view for atmospheric wind vector observation form satellite platforms[D](2015).
[21] XIAO Yang, FENG Yutao, WEN Zhenqing et al. Doppler differential interferometry technology for wind field detection in middle and upper atmosphere(Invited)[J]. Acta Photonica Sinica, 51, 291-306(2022).
[22] SHEN Jing. Doppler asymmetric spatial heterodyne technique for wind detection in the upper atmosphere[D](2017).
[23] WEI D, ZHU Y, LIU J et al. Thermally stable monolithic Doppler asymmetric spatial heterodyne interferometer: optical design and laboratory performance[J]. Optics Express, 28, 19887-19900(2020).
[24] MARR K D, ENGLERT C R, HARLANDER J M et al. Thermal sensitivity of DASH interferometers: the role of thermal effects during the calibration of an echelle DASH interferometer[J]. Applied Optics, 52, 8082-8088(2013).
[25] FENG Yutao, BAI Qinglan, WANG Yongmei et al. Theory and method of design of field of view broadening prism for spatial heterodyne spectrometer[J]. Acta Optica Sinica, 32, 272-277(2012).
[26] CHEN Zhili, LIU Yuzhao, FEI Mangmang et al. Design of industrial double telecentric optical lens with large field of view[J]. Journal of Xi’an Technological University, 38, 444-450(2018).
[27] GUHARAY A, MONDAL S, SARKHEL S et al. Signature of a mesospheric bore in 557.7 nm airglow emission using all-sky imager at Hanle (32.7oN, 78.9oE)[J]. Advances in Space Research: The Official Journal of the Committee on Space Research(COSPAR), 69(2022).
Get Citation
Copy Citation Text
Yong CUI, Liang GAO, Lun JIANG, Jinjiang WANG, Huiyi PEI, Yuanxiang FANG. Design of ground-based dual-band asymmetric spatial heterodyne wind interferometer[J]. Journal of Applied Optics, 2025, 46(3): 571
Category:
Received: Apr. 23, 2024
Accepted: --
Published Online: May. 28, 2025
The Author Email: Liang GAO (高亮)