Chinese Journal of Lasers, Volume. 39, Issue 10, 1002004(2012)
Suppressing Amplified Spontaneous Emission in High-Power Pulsed Er-Yb Codoped Fiber Amplifiers
[1] [1] V. Philippov, C. Codemard, Y. Jeong et al.. High-energy in-fiber pulse amplification for coherent lidar applications[J]. Opt. Lett., 2004, 29(22): 2590~2592
[2] [2] A. Dolfi-Bouteyre, G. Canat, M. Valla et al.. Pulsed 1.5-μm Lidar for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier[J]. IEEE J. Sel. Top. Quantum Electron., 2009, 15(2): 441~450
[3] [3] Zheng Libing, Wang Jianbin, Liang Xu et al.. Study of polymer optical waveguide amplifier at 1.55 μm wavelength[J]. Chinese J. Lasers, 2012, 39(s1): s105003
[4] [4] Zhou Huijuan, Chen Mo, Chen Wei et al.. Brillouin-erbium fiber laser with ultra-short ring cavity[J]. Chinese J. Lasers, 2012, 39(7): 0702010
[5] [5] Ma Mingxiang, Yang Huayong, Xu Pan et al.. Investigation on characteristics of mode hopping in ultra-narrow linewidth erbium-doped fiber ring laser under pump modulation[J]. Acta Optica Sinica, 2012, 32(3): 0314002
[6] [6] Y. Jeong, J. K. Sahu, D. B. S. Soh et al.. High-power tunable single-frequency single-mode erbium: ytterbium codoped large-core fiber master-oscillator power amplifier source[J]. Opt. Lett., 2005, 30(22): 2997~2999
[7] [7] A. Yusim, J. Barsalou, D. Gapontsev et al.. 100 Watt, single-mode, CW, linearly polarized all-fiber format 1.56 μm laser with suppression of parasitic lasing effects[C]. SPIE, 2005, 5709: 69~77
[8] [8] A. Shirakawa, H. Suzuki, M. Tanisho et al.. Yb-ASE-free Er amplification in short-wavelength filtered ErYb photonic-crystal fiber[C]. San Diego: Optical Fiber Communication Conference, 2008. OThN2
[9] [9] Q. Han, J. Ning, Z. Sheng. Numerical investigation of the ASE and power scaling of cladding-pumped Er-Yb codoped fiber amplifiers[J]. IEEE J. Quantum Electron., 2010, 46(11): 1535~1541
[10] [10] Q. Han, Y. He, Z. Sheng et al.. Numerical characterization of Yb-signal-aided cladding-pumped ErYb-codoped fiber amplifiers[J]. Opt. Lett., 2011, 36(9): 1599~1601
[11] [11] V. Kuhn, P. Wessels, J. Neumann et al.. Stabilization and power scaling of cladding pumped ErYb-codoped fiber amplifier via auxiliary signal at 1064 nm[J]. Opt. Express, 2009, 17(20): 18304~18311
[12] [12] V. Kuhn, D. Kracht, J. Neumann et al.. Dependence of ErYb-codoped 1.5 μm amplifier on wavelength-tuned auxiliary seed signal at 1 μm wavelength[J]. Opt. Lett., 2010, 35(24): 4105~4107
[13] [13] G. Sobon, P. Kaczmarek, A. Antonczak et al.. Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers[J]. Opt. Express, 2011, 19(20): 19104~19113
[14] [14] G. Sobon, P. Kaczmarek, K. M. Abramski. Erbium-ytterbium co-doped fiber amplifier operating at 1550 nm with stimulated lasing at 1064 nm[J]. Opt. Commun., 2012, 285(7): 1929~1933
[15] [15] M. Karásek. Optimum design of Er3+-Yb3+ codoped fibers for large-signal high-pump-power applications[J]. IEEE J. Quantum Electron., 1997, 33(10): 1699~1705
[16] [16] E. Yahel, A. Hardy. Efficiency optimization of high-power, Er3+-Yb3+-codoped fiber amplifiers for wavelength-division-multiplexing applications[J]. J. Opt. Soc. Am. B, 2003, 20(6): 1189~1197
[17] [17] R. Butt. Introduction to Numerical Analysis Using Matlab[M]. Sudbury: Jones and Bartlett publishers, 2007. 542~545
[18] [18] G. Canat, J. C. Mollier, J. P. Bouzinac et al.. Dynamics of high-power erbium-ytterbium fiber amplifiers[J]. J. Opt. Soc. Am. B, 2005, 22(11): 2308~2318
Get Citation
Copy Citation Text
He Yang, Han Qun, Ning Jiping, Sheng Zhaoxia, Ren Kun. Suppressing Amplified Spontaneous Emission in High-Power Pulsed Er-Yb Codoped Fiber Amplifiers[J]. Chinese Journal of Lasers, 2012, 39(10): 1002004
Category: Laser physics
Received: Jun. 5, 2012
Accepted: --
Published Online: Sep. 10, 2012
The Author Email: He Yang (heyang3g@tju.edu.cn)