Chinese Optics, Volume. 13, Issue 1, 148(2020)

Analysis of the optimal operating wavelength of spaceborne oceanic lidar

LIU Qun1, LIU Chong1, ZHU Xiao-lei2, ZHOU Yu-di1, LE Cheng-feng3, BAI Jian1, HE Yan2, BI De-cang2, and LIU Dong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(22)

    [1] [1] BEHRENFELD M J, O′MALLEY R T, SIEGEL D A, et al.. Climate-driven trends in contemporary ocean productivity[J]. Nature, 2006, 444(7120): 752-755.

    [2] [2] MCCLAIN C R. A decade of satellite ocean color observations[J]. Annual Review of Marine Science, 2009, 1: 19-42.

    [3] [3] HOSTETLER C A, BEHRENFELD M J, HU Y X, et al.. Spaceborne lidar in the study of marine systems[J]. Annual Review of Marine Science, 2017, 10: 121-147.

    [4] [4] BEHRENFELD M J, HU Y X, HOSTETLER C A, et al.. Space-based lidar measurements of global ocean carbon stocks[J]. Geophysical Research Letters, 2013, 40(16): 4355-4360.

    [5] [5] BEHRENFELD M J, HU Y X, O′MALLEY R T, et al.. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar[J]. Nature Geoscience, 2017, 10(2): 118-122.

    [6] [6] LIU Q, LIU D, BAI J, et al.. Relationship between the effective attenuation coefficient of spaceborne lidar signal and the IOPs of seawater[J]. Optics Express, 2018, 26(23): 30278-30291.

    [7] [7] The Pilot National Laboratory for Marine Science and Technology. The Pilot National Laboratory for marine science and technology held the demonstrating meeting on the project of design of "GuanLan" marine science satellite and key technologies for remote sensing applications[EB/OL]. (2017-11-17). http: //www.qnlm.ac/page?a=5&b=3&c=63&p=detail. (in Chinese)

    [8] [8] SCHULIEN J A, BEHRENFELD M J, HAIR J W, et al.. Vertically- resolved phytoplankton carbon and net primary production from a high spectral resolution lidar[J]. Optics Express, 2017, 25(12): 13577-13587.

    [9] [9] LEE J H, CHURNSIDE J H, MARCHBANKS R D, et al.. Oceanographic lidar profiles compared with estimates from in situ optical measurements[J]. Applied Optics, 2013, 52(4): 786-794.

    [10] [10] ZHOU Y D, LIU D, XU P T, et al.. Detecting atmospheric-water optical property profiles with a polarized lidar[J]. Journal of Remote Sensing, 2019, 23(1): 108-115. (in Chinese)

    [11] [11] LIU B Y, LI R Q, YANG Q, et al.. Estimation of global detection depth of spaceborne oceanographic lidar in blue-green spectral region[J]. Infrared and Laser Engineering, 2019, 48(1): 117-122. (in Chinese)

    [12] [12] CHURNSIDE J H. Review of profiling oceanographic lidar[J]. Optical Engineering, 2014, 53(5): 051405.

    [13] [13] LIU ZH Y, VOELGER P, SUGIMOTO N. Simulations of the observation of clouds and aerosols with the experimental lidar in space equipment system[J]. Applied Optics, 2000, 39(18): 3120-3137.

    [14] [14] GORDON H R. Interpretation of airborne oceanic lidar: effects of multiple scattering[J]. Applied Optics, 1982, 21(16): 2996-3001.

    [15] [15] LEE Z P, DARECKI M, CARDER K L, et al.. Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods[J]. Journal of Geophysical Research: Oceans, 2005, 110(C2): C02017.

    [16] [16] CULLEN J J. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?[J]. Annual Review of Marine Science, 2015, 7: 207-239.

    [17] [17] MOREL A, BERTHON J F. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications[J]. Limnology and Oceanography, 1989, 34(8): 1545-1562.

    [18] [18] LEE Z, WEIDEMANN A, KINDLE J, et al.. Euphotic zone depth: its derivation and implication to ocean-color remote sensing[J]. Journal of Geophysical Research: Oceans, 2007, 112(C3): C03009.

    [19] [19] MA J, LU T T, ZHU X L, et al.. Highly efficient H-β Fraunhofer line optical parametric oscillator pumped by a single-frequency 355 nm laser[J]. Chinese Optics Letters, 2018, 16(8): 081901.

    [20] [20] CHURNSIDE J H, WILSON J J, OLIVER C W. Evaluation of the capability of the experimental oceanographic fisheries lidar (FLOE) for tuna detection in the eastern tropical pacific[R]. Boulder: Environmental Technology Laboratory, 1998.

    [21] [21] MOBLEY C D. Light and Water: Radiative Transfer in Natural Waters[M]. San Diego: Academic Press, 1994.

    [22] [22] GABRIEL C, KHALIGHI M A, BOURENNANE S, et al.. Monte-carlo-based channel characterization for underwater optical communication systems[J]. Journal of Optical Communications and Networking, 2013, 5(1): 1-12.

    CLP Journals

    [1] Rong-tao LIU, Jia-hang LIU. Brightness correction and color restoration of seabed image obtained by active optical detection[J]. Chinese Optics, 2022, 15(4): 689

    [2] Da-hua HE, Yang-yang LI, Shao-jie ZHOU. Iterative solution of underwater scattering light field[J]. Chinese Optics, 2022, 15(2): 297

    Tools

    Get Citation

    Copy Citation Text

    LIU Qun, LIU Chong, ZHU Xiao-lei, ZHOU Yu-di, LE Cheng-feng, BAI Jian, HE Yan, BI De-cang, LIU Dong. Analysis of the optimal operating wavelength of spaceborne oceanic lidar[J]. Chinese Optics, 2020, 13(1): 148

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 26, 2019

    Accepted: --

    Published Online: Mar. 9, 2020

    The Author Email:

    DOI:10.3788/co.20201301.0148

    Topics