Journal of Synthetic Crystals, Volume. 51, Issue 3, 428(2022)
Growth of Ultrafine Single-Crystal Fibers by Laser Heated Pedestal Growth Technique
[4] [4] ANDRADE E N D C. The flow in metals under large constant stresses[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1914, 90(619): 329-342.
[5] [5] SANGLA D, MARTIAL I, AUBRY N, et al. High power laser operation with crystal fibers[J]. Applied Physics B, 2009, 97(2): 263-273.
[6] [6] DLEN X, PIEHLER S, DIDIERJEAN J, et al. 250 W single-crystal fiber Yb∶YAG laser[J]. Optics Letters, 2012, 37(14): 2898-2900.
[7] [7] SOLEIMANI N, PONTING B, GEBREMICHAEL E, et al. Coilable single crystals fibers of doped-YAG for high power laser applications[J]. Journal of Crystal Growth, 2014, 393: 18-22.
[8] [8] KIM W, SHAW B, BAYYA S, et al. Crystal fiber lasers[C]//Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications Ⅺ. August 6-10, 2017. San Diego, USA. SPIE, 2017.
[11] [11] WANG T, ZHANG J, YANG L, et al. Fabrication and sensitivity optimization of garnet crystal-fiber ultrasonic temperature sensor[J]. Journal of Materials Chemistry C, 2020, 8(11): 3830-3837.
[12] [12] WANG Y X, WANG S Z, WANG J Y, et al. High-efficiency ~2 μm CW laser operation of LD-pumped Tm3+∶CaF2 single-crystal fibers[J]. Optics Express, 2020, 28(5): 6684.
[13] [13] ZHAO Y G, WANG L, CHEN W D, et al. 35 W continuous-wave Ho∶YAG single-crystal fiber laser[J]. High Power Laser Science and Engineering, 2020, 8: e25.
[14] [14] LIU J, DONG J F, WANG Y Y, et al. Laser operation of Tm∶LuAg single-crystal fiber grown by the micro-pulling down method[J]. Crystals, 2021, 11(8): 898.
[15] [15] ZHANG N, YIN Y Q, ZHANG J, et al. Optimized growth of high length-to-diameter ratio Lu2O3 single crystal fibers by the LHPG method[J]. Cryst Eng Comm, 2021, 23(7): 1657-1662.
[16] [16] WANG T, WANG H Y, ZHANG J, et al. Design and directional growth of (Mg1-xZnx)(Al1-yCry)2O4 single-crystal fibers for high-sensitivity and high-temperature sensing based on lattice doping engineering and acoustic anisotropy[J]. Advanced Functional Materials, 2021, 31(42): 2103224.
[17] [17] AN N, ZHOU H L, ZHU K S, et al. Improved temperature sensing performance of YAG∶Ho3+/Yb3+ by doping Ce3+ ions based on up-conversion luminescence[J]. Journal of Alloys and Compounds, 2020, 843: 156057.
[18] [18] ANDREETA M R B, HERNANDES A C. Laser-heated pedestal growth of oxide fibers[M].Berlin: Springer Handbook of Crystal Growth, 2010: 393-432.
Get Citation
Copy Citation Text
WANG Tao, JIA Zhitai, LI Yang, ZHANG Jian, TAO Xutang. Growth of Ultrafine Single-Crystal Fibers by Laser Heated Pedestal Growth Technique[J]. Journal of Synthetic Crystals, 2022, 51(3): 428
Category:
Received: Jan. 24, 2022
Accepted: --
Published Online: Apr. 21, 2022
The Author Email:
CSTR:32186.14.