Advanced Photonics, Volume. 1, Issue 2, 024001(2019)
Photonic tractor beams: a review
Fig. 1. (a) Definition of the OPF used in this paper. The source and object are centered at A and B, respectively, and the center-to-center vector
Fig. 2. OPF by structured light beams: (a) experimental demonstration of OPF by a solenoid beam:24 (a1) the spiral intensity peak pattern in experiment, (a2) wave vector back down the spiral, and (a3) experimental measurement of the pushing and pulling trace. (b) Theoretical proposal of OPF achieved by the excitation of multipoles in the object,27,40 and (c1) theoretical proposal of OPF by a Bessel beam with a cone angle of
Fig. 3. OPF by the interference of multiple beams. (a) Using the interference of a series of plane waves,55 and (b) using the interference of two Gaussian beams:54 (b1) schematic illustration of the configuration, (b2) the
Fig. 5. OPF related to chirality. (a) OPF on a chiral structure formed by metallic spheres aligned on a spiral line (black curve):69 (a1) the schematic structure and (a2) optical force versus the diameter of the spheres. (b) OPF on a chiral slab with the assistance of reflection mirror:70 (b1) the chiral slab is transparent for the incident handedness of light, but absorptive for the reflection beams; due to the way handedness is reversed by the mirror, the total force is pulling; (b2) when incident handedness is reversed, the slab is pushing forward.
Fig. 6. OPF realized on an interface. (a) Optical pulling on an air–water interface, which is realized by the linear momentum increase when the incident light is scattered from air to water through the object.38 (b) Optical pulling on a plasmonic surface, which is realized by the directional excitation of the SPP on the air–silver interface.75
Fig. 8. OPF in waveguide channels with effective negative mode index: (a) a square dielectric waveguide array, which mimics the Clarricoats-Waldron waveguide with negative mode index;88 (b1) and (b2) a plasmonic film in vacuum, which supports backward wave and can resonantly pull a dielectric sphere above it with very high-momentum-to-force efficiency;89 and (c) optical pulling in a biaxial slab layered structure.90
Fig. 9. OPF in a PC structure by the SC mode.96 (a) Scattering of the SC mode by an embedded object. (b) Intensity profile along the beam symmetry axis; a negative intensity gradient across the object can be observed clearly, which is the physical origin for the OPF. (c) and (d) Intensity profile of the beam around the object at two different positions.
Fig. 10. Experimental demonstrations of OPF assisted by photophoretic force. (a) Stable pulling and pushing of a coated empty glass sphere using vector beams with a doughnut intensity pattern.107 For azimuthally polarized beam, the force is pulling, while for radially polarized beam, the force is pushing. (b) Pulling and pushing of a metallic plate on a fiber taper.108
Get Citation
Copy Citation Text
Weiqiang Ding, Tongtong Zhu, Lei-Ming Zhou, Cheng-Wei Qiu, "Photonic tractor beams: a review," Adv. Photon. 1, 024001 (2019)
Category: Reviews
Received: Oct. 12, 2018
Accepted: Feb. 27, 2019
Published Online: Apr. 2, 2019
The Author Email: Ding Weiqiang (wqding@hit.edu.cn), Qiu Cheng-Wei (chengwei.qiu@nus.edu.sg)