Photonics Research, Volume. 10, Issue 4, 965(2022)

Abnormal optical response of PAMAM dendrimer-based silver nanocomposite metamaterials

Xianfeng Wu, Zhenchun Li, Yuan Zhao, Chaoshun Yang, Wei Zhao, and Xiaopeng Zhao*
Author Affiliations
  • Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710129, China
  • show less
    References(55)

    [1] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang. Three-dimensional optical metamaterial with a negative refractive index. Nature, 455, 376-379(2008).

    [2] S. P. Burgos, R. de Waele, A. Polman, H. A. Atwater. A single-layer wide-angle negative-index metamaterial at visible frequencies. Nat. Mater., 9, 407-412(2010).

    [3] D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, J. A. Rogers. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat. Nanotechnol., 6, 402-407(2011).

    [4] C. Garcia-Meca, J. Hurtado, J. Marti, A. Martinez, W. Dickson, A. V. Zayats. Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths. Phys. Rev. Lett., 106, 067402(2011).

    [5] T. Xu, A. Agrawal, M. Abashin, K. J. Chau, H. J. Lezec. All-angle negative refraction and active flat lensing of ultraviolet light. Nature, 497, 470-474(2013).

    [6] A. Lakhtakia. Positive and negative Goos-Hänchen shifts and negative phase-velocity mediums (alias left-handed materials). Int. J. Electron. Commun., 58, 229-231(2004).

    [7] Z. H. Fang, H. Chen, F. S. Yang, C. R. Luo, X. P. Zhao. Slowing down light using a dendritic cell cluster metasurface waveguide. Sci. Rep., 6, 37856(2016).

    [8] A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, H. Park. Visible-frequency hyperbolic metasurface. Nature, 522, 192-196(2015).

    [9] H. Chen, J. Zhao, Z. Fang, D. An, X. Zhao. Visible light metasurfaces assembled by quasiperiodic dendritic cluster sets. Adv. Mater. Interfaces, 6, 1801834(2019).

    [10] N. Fang, H. Lee, C. Sun, X. Zhang. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [11] J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun., 1, 143(2010).

    [12] L. Liu, P. Gao, K. Liu, W. Kong, Z. Zhao, M. Pu, C. Wang, X. Luo. Nanofocusing of circularly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials. Mater. Horiz., 4, 290-296(2017).

    [13] X. Ni, J. W. Zi, M. Mrejen, Y. Wang, X. Zhang. An ultrathin invisibility skin cloak for visible light. Science, 349, 1310-1314(2015).

    [14] L. Y. Beliaev, O. Takayama, P. N. Melentiev, A. V. Lavrinenko. Photoluminescence control by hyperbolic metamaterials and metasurfaces: a review. Opto-Electron. Adv., 4, 210031(2021).

    [15] K. L. Tsakmakidis, A. D. Boardman, O. Hess. ‘Trapped rainbow’ storage of light in metamaterials. Nature, 450, 397-401(2007).

    [16] O. Hosten, P. Kwiat. Observation of the spin Hall effect of light via weak measurements. Science, 319, 787-790(2008).

    [17] V. Shalaev, A. Kildishev, T. Klar, A. Popov, V. Drachev. Optical negative-index metamaterials: from low to no loss. Nat. Photonics, 1, 41-48(2006).

    [18] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [19] X. Zhao. Bottom-up fabrication methods of optical metamaterials. J. Mater. Chem., 22, 9439-9449(2012).

    [20] K. J. Stebe, E. Lewandowski, M. Ghosh. Materials science. Oriented assembly of metamaterials. Science, 325, 159-160(2009).

    [21] H. Alaeian, J. A. Dionne. Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials. Opt. Express, 20, 15781-15796(2012).

    [22] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem., 107, 668-677(2003).

    [23] S. Lee. Colloidal superlattices for unnaturally high-index metamaterials at broadband optical frequencies. Opt. Express, 23, 28170-28181(2015).

    [24] K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones, C. Zhang, A. J. Senesi, B. Lee, G. C. Schatz, C. A. Mirkin. Using DNA to design plasmonic metamaterials with tunable optical properties. Adv. Mater., 26, 653-659(2014).

    [25] D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith. A new class of polymers: starburst-dendritic macromolecules. Polym. J., 17, 117-132(1985).

    [26] D. A. Tomalia, H. Baker, J. De Wald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith. Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules, 19, 2466-2468(1986).

    [27] G. Dang, Y. Shi, Z. Fu, W. Yang. Fe3O4@PS@PAMAM-Ag magnetic nanocatalysts and their recoverable catalytic ability. Chin. J. Catal., 33, 651-658(2012).

    [28] T. Wang, Y. Zhang, L. Wei, Y. G. Teng, T. Honda, I. Ojima. Design, synthesis, and biological evaluations of asymmetric bow-tie PAMAM dendrimer-based conjugates for tumor-targeted drug delivery. ACS Omega, 3, 3717-3736(2018).

    [29] B. Vivek, E. Prasad. Self-assembly-directed aerogel and membrane formation from a magnetic composite: an approach to developing multifunctional materials. ACS Appl. Mater. Interfaces, 9, 7619-7628(2017).

    [30] M. A. van Dongen, S. Vaidyanathan, M. M. B. Holl. PAMAM dendrimers as quantized building blocks for novel nanostructures. Soft Matter, 9, 11188-11196(2013).

    [31] S. Aliannejadi, A. H. Hassani, H. A. Panahi, S. M. Borghei. Fabrication and characterization of high-branched recyclable PAMAM dendrimer polymers on the modified magnetic nanoparticles for removing naphthalene from aqueous solutions. Microchem. J., 145, 767-777(2019).

    [32] X. Zhou, Q. H. Fu, J. Zhao, Y. Yang, X. P. Zhao. Negative permeability and subwavelength focusing of quasi-periodic dendritic cell metamaterials. Opt. Express, 14, 7188-7197(2006).

    [33] H. Liu, X. Zhao, Y. Yang, Q. Li, J. Lv. Fabrication of infrared left‐handed metamaterials via double template-assisted electrochemical deposition. Adv. Mater., 20, 2050-2054(2008).

    [34] S. J. Palmer, X. Xiao, N. Pazos-Perez, L. Guerrini, M. A. Correa-Duarte, S. A. Maier, R. V. Craster, R. A. Alvarez-Puebla, V. Giannini. Extraordinarily transparent compact metallic metamaterials. Nat. Commun., 10, 2118(2019).

    [35] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

    [36] K. Esumi, A. Suzuki, N. Aihara, K. Usui, K. Torigoe. Preparation of gold colloids with UV irradiation using dendrimers as stabilizer. Langmuir, 14, 3157-3159(1998).

    [37] S. Keki, J. Torok, G. Deak, L. Daroczi, M. Zsuga. Silver nanoparticles by PAMAM-assisted photochemical reduction of Ag+. J. Colloid Interface Sci., 229, 550-553(2000).

    [38] U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters(1995).

    [39] F. Goos, H. Hanchen. Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann. Phys., 436, 333-346(1947).

    [40] M. Onoda, S. Murakami, N. Nagaosa. Hall effect of light. Phys. Rev. Lett., 93, 083901(2004).

    [41] S. A. Taya, E. J. El-Farram, T. M. El-Agez. Goos–Hänchen shift as a probe in evanescent slab waveguide sensors. Int. J. Electron. Commun., 66, 204-210(2012).

    [42] Y. Yang, T. Lee, M. Kim, C. Jung, T. Badloe, D. Lee, S. Lee, H.-J. Lee, J. Rho. Dynamic optical spin Hall effect in chitosan-coated all-dielectric metamaterials for a biosensing platform. IEEE J. Sel. Top. Quantum Electron., 27, 7300608(2021).

    [43] R. Wang, J. Zhou, K. Zeng, S. Chen, X. Ling, W. Shu, H. Luo, S. Wen. Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect. APL Photon., 5, 016105(2020).

    [44] A. Shaltout, J. Liu, A. Kildishev, V. Shalaev. Photonic spin Hall effect in gap-plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica, 2, 860-863(2015).

    [45] K. Ando, M. Morikawa, T. Trypiniotis, Y. Fujikawa, C. H. W. Barnes, E. Saitoh. Photoinduced inverse spin-Hall effect: conversion of light-polarization information into electric voltage. Appl. Phys. Lett., 96, 082502(2010).

    [46] M. Kim, D. Lee, T. H.-Y. Nguyen, H.-J. Lee, G. Byun, J. Rho. Total reflection-induced efficiency enhancement of the spin Hall effect of light. ACS Photon., 8, 2705-2712(2021).

    [47] M. Kim, D. Lee, H. Cho, B. Min, J. Rho. Spin Hall effect of light with near-unity efficiency in the microwave. Laser Photon. Rev., 15, 2000393(2020).

    [48] C. Prajapati, D. Ranganathan, J. Joseph. Interferometric method to measure the Goos-Hanchen shift. J. Opt. Soc. Am. A, 30, 741-747(2013).

    [49] C. Prajapati, D. Ranganathan, J. Joseph. Spin Hall effect of light measured by interferometry. Opt. Lett., 38, 2459-2462(2013).

    [50] T. Ma, G. Shvets. All-Si valley-Hall photonic topological insulator. New J. Phys., 18, 025012(2016).

    [51] M. Hafezi, E. A. Demler, M. D. Lukin, J. M. Taylor. Robust optical delay lines with topological protection. Nat. Phys., 7, 907-912(2011).

    [52] M. Hafezi, S. Mittal, J. Fan, A. Migdall, J. M. Taylor. Imaging topological edge states in silicon photonics. Nat. Photonics, 7, 1001-1005(2013).

    [53] A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, G. Shvets. Photonic topological insulators. Nat. Mater., 12, 233-239(2013).

    [54] L.-H. Wu, X. Hu. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett., 114, 223901(2015).

    [55] D. Malterre, B. Kierren, Y. Fagot-Revurat, C. Didiot, F. G. de Abajo, F. Schiller, J. Cordón, J. Ortega. Symmetry breaking and gap opening in two-dimensional hexagonal lattices. New J. Phys., 13, 013026(2011).

    Tools

    Get Citation

    Copy Citation Text

    Xianfeng Wu, Zhenchun Li, Yuan Zhao, Chaoshun Yang, Wei Zhao, Xiaopeng Zhao, "Abnormal optical response of PAMAM dendrimer-based silver nanocomposite metamaterials," Photonics Res. 10, 965 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nanophotonics and Photonic Crystals

    Received: Oct. 27, 2021

    Accepted: Feb. 16, 2022

    Published Online: Mar. 16, 2022

    The Author Email: Xiaopeng Zhao (xpzhao@nwpu.edu.cn)

    DOI:10.1364/PRJ.447131

    Topics