Acta Optica Sinica, Volume. 42, Issue 14, 1405002(2022)
Double-Resonance SERS Substrate Based on Grating/Nanoparticle Hybrid Structure
[1] Kanipe K N, Chidester P P F, Stucky G D et al. Large format surface-enhanced Raman spectroscopy substrate optimized for enhancement and uniformity[J]. ACS Nano, 10, 7566-7571(2016).
[2] Zhang C, Jiang S Z, Yang C et al. Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS[J]. Scientific Reports, 6, 25243(2016).
[3] Lin D D, Wu Z L, Li S J et al. Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy[J]. ACS Nano, 11, 1478-1487(2017).
[4] Yu Y, Xiao T H, Wu Y Z et al. Roadmap for single-molecule surface-enhanced Raman spectroscopy[J]. Advanced Photonics, 2, 014002(2020).
[5] Wang X, Huang S C, Hu S et al. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy[J]. Nature Reviews Physics, 2, 253-271(2020).
[6] Langer J, de Aberasturi D J, Aizpurua J et al. Present and future of surface-enhanced Raman scattering[J]. ACS Nano, 14, 28-117(2020).
[7] Zhang C, Zhang J, Zhu Y. Slot-waveguide coupled nanostructure enhanced Raman spectroscopy[J]. Acta Optica Sinica, 40, 0313001(2020).
[8] Li L, Xiao G N. Research progress of preparing surface-enhanced Raman scattering active substrates by printing technologies[J]. Spectroscopy and Spectral Analysis, 39, 3326-3332(2019).
[9] Camden J P, Dieringer J A, Zhao J et al. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing[J]. Accounts of Chemical Research, 41, 1653-1661(2008).
[10] Huang Y, Zhang X, Ringe E et al. Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays[J]. Nanoscale, 10, 4267-4275(2018).
[11] Xu D R, Teng F, Wang Z S et al. Droplet-confined electroless deposition of silver nanoparticles on ordered superhydrophobic structures for high uniform SERS measurements[J]. ACS Applied Materials & Interfaces, 9, 21548-21553(2017).
[12] Niu C Y, Zou B F, Wang Y Q et al. Highly sensitive and reproducible SERS performance from uniform film assembled by magnetic noble metal composite microspheres[J]. Langmuir, 32, 858-863(2016).
[13] Zhang L L, Hao R, Zhang D J et al. Shape-controlled hierarchical flowerlike Au nanostructure microarrays by electrochemical growth for surface-enhanced Raman spectroscopy application[J]. Analytical Chemistry, 92, 9838-9846(2020).
[14] Fang Y, Seong N H, Dlott D D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering[J]. Science, 321, 388-392(2008).
[15] Abdulhalim I. Coupling configurations between extended surface electromagnetic waves and localized surface plasmons for ultrahigh field enhancement[J]. Nanophotonics, 7, 1891-1916(2018).
[16] Xia M, Zhang P, Qiao K et al. Coupling SPP with LSPR for enhanced field confinement: a simulation study[J]. The Journal of Physical Chemistry C, 120, 527-533(2016).
[17] Srivastava S K, Li A R, Li S Z et al. Optimal interparticle gap for ultrahigh field enhancement by LSP excitation via ESPs and confirmation using SERS[J]. The Journal of Physical Chemistry C, 120, 28735-28742(2016).
[18] Li A R, Isaacs S, Abdulhalim I et al. Ultrahigh enhancement of electromagnetic fields by exciting localized with extended surface plasmons[J]. The Journal of Physical Chemistry C, 119, 19382-19389(2015).
[19] Liu Y, Xu S P, Li H B et al. Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation[J]. Chemical Communications, 47, 3784-3786(2011).
[20] Futamata M, Ishikura M, Iida C et al. The critical importance of gap modes in surface enhanced Raman scattering[J]. Faraday Discussions, 178, 203-220(2015).
[21] Zhou Y, Li X H, Ren X G et al. Designing and fabricating double resonance substrate with metallic nanoparticles-metallic grating coupling system for highly intensified surface-enhanced Raman spectroscopy[J]. The Analyst, 139, 4799-4805(2014).
[22] Kalachyova Y, Mares D, Jerabek V et al. Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles[J]. Physical Chemistry Chemical Physics, 19, 14761-14769(2017).
[23] Wu C F, Pan H, Zhu Y C. Study of electric field intensity enhancement for hybrid structure containing silver grating and silver nanoparticles[J]. Chinese Journal of Lasers, 49, 0608003(2022).
[24] Palik E D[M]. Handbook of optical constant of solids II(1991).
[25] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972).
[26] Wu C F, Hu Q, Benison M et al. Modulation of interparticle gap for enhanced SERS sensitivity in chemically stable Ag@Au hetero-architectures[J]. New Journal of Chemistry, 44, 13843-13851(2020).
[27] Montgomery J M, Imre A, Welp U et al. SERS enhancements via periodic arrays of gold nanoparticles on silver film structures[J]. Optics Express, 17, 8669-8675(2009).
[28] Xiao C, Chen Z B, Qin M Z et al. SPPs characteristics of Ag/SiO2 sinusoidal nano-grating in SERS application[J]. Optik, 168, 650-659(2018).
[29] Gillibert R, Sarkar M, Bryche J F et al. Directional surface enhanced Raman scattering on gold nano-gratings[J]. Nanotechnology, 27, 115202(2016).
[30] Balci S, Karademir E, Kocabas C. Strong coupling between localized and propagating plasmon polaritons[J]. Optics Letters, 40, 3177-3180(2015).
Get Citation
Copy Citation Text
Chunfang Wu, Pengfei Duan, Hao Pan, Yechuan Zhu, Kaifeng Zhang, Kun Li, Jie Wei. Double-Resonance SERS Substrate Based on Grating/Nanoparticle Hybrid Structure[J]. Acta Optica Sinica, 2022, 42(14): 1405002
Category: Diffraction and Gratings
Received: Dec. 14, 2021
Accepted: Jan. 27, 2022
Published Online: Jul. 15, 2022
The Author Email: Wu Chunfang (wuchf@xatu.edu.cn)