Laser & Optoelectronics Progress, Volume. 59, Issue 22, 2217001(2022)

Super-Resolution Reconstruction of Magnetic Resonance Image Based on Deep Learning

Mengxue Pan, Ning Qu, Yeru Xia, Deyong Yang, Hongyu Wang, and Wenlong Liu*
Author Affiliations
  • Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
  • show less
    Figures & Tables(11)
    Network structure
    Convolution residual block and residual block. (a) Convolution residual block; (b) residual block
    Sub-pixel convolution
    Image 1 reconstruction results with different algorithms. (a) Original image; (b) Bicubic; (c) FSRCNN; (d) EDSR; (e) SRResNet; (f) proposed algorithm
    Image 2 reconstruction results with different algorithms. (a) Original image; (b) Bicubic; (c) FSRCNN; (d) EDSR; (e) SRResNet; (f) proposed algorithm
    Image 3 reconstruction results with different algorithms. (a) Original image; (b) Bicubic; (c) FSRCNN; (d) EDSR; (e) SRResNet; (f) proposed algorithm
    • Table 1. Convolution residual block parameter setting

      View table

      Table 1. Convolution residual block parameter setting

      LayerInputFilterOutput
      Conv-RB1128×128×643×3×64128×128×64
      Conv-RB2128×128×643×3×128128×128×128
      Conv-RB3128×128×1283×3×256128×128×256
      Conv-RB4128×128×2563×3×512128×128×512
      Conv-RB5128×128×5123×3×256128×128×256
      Conv-RB6128×128×2563×3×128128×128×128
      Conv-RB7128×128×1283×3×64128×128×64
    • Table 2. Image subjective evaluation form

      View table

      Table 2. Image subjective evaluation form

      GradeAbsolute measurement scaleDetailScore
      1ExcellentThe best in the group5
      2GoodBetter than the average in the group4
      3AverageGroup average3
      FairWorse than the average in the group2
      PoorWorse in the group1
    • Table 3. Comparison of subjective evaluation values of super-resolution reconstruction methods

      View table

      Table 3. Comparison of subjective evaluation values of super-resolution reconstruction methods

      MR imageBicubicFSRCNNEDSRSRResNetProposed method
      11.02.03.04.05.0
      21.01.83.04.24.8
      31.01.83.04.25.0
    • Table 4. Comparison of PSNR values of various super-resolution reconstruction

      View table

      Table 4. Comparison of PSNR values of various super-resolution reconstruction

      MR imageBicubicFSRCNNEDSRSRResNetProposed method
      128.6929.9329.2329.2531.18
      223.1024.2324.1724.7529.88
      326.4025.0126.8726.6229.12
    • Table 5. Comparison of energy gradient values of various super-resolution reconstruction

      View table

      Table 5. Comparison of energy gradient values of various super-resolution reconstruction

      MR imageBicubicFSRCNNEDSRSRResNetProposed method
      13931202671023392131671209276613343760
      255331408946652125827321437492916688306
      345472427907218113008941234098315936792
    Tools

    Get Citation

    Copy Citation Text

    Mengxue Pan, Ning Qu, Yeru Xia, Deyong Yang, Hongyu Wang, Wenlong Liu. Super-Resolution Reconstruction of Magnetic Resonance Image Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2217001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: Aug. 2, 2021

    Accepted: Oct. 13, 2021

    Published Online: Oct. 13, 2022

    The Author Email: Wenlong Liu (liuwl@dlut.edu.cn)

    DOI:10.3788/LOP202259.2217001

    Topics