Acta Optica Sinica, Volume. 42, Issue 4, 0427001(2022)

Satellite Clock Offset Measurement Based on Conveyor Belt Quantum Entangled Light

Yongfei Liu, Chunyan Yang*, Luhan Zhao, Zhaoheng Ren, Tianli Wei, and Dewei Wu
Author Affiliations
  • Information and Navigation College, Air Force Engineering University, Xian, Shaanxi 710077, China
  • show less
    References(17)

    [1] Liu QJ, Liu F, Wu X J et al. The overall structure of the national integrated PNT system and its time-space reference. C]∥China Satellite Navigation Conference. Beijing: Organizing Committee of China Satellite Navigation Conference(2017).

    [2] Xie J, Liu Q J, Bian L. Development assumption of national comprehensive PNT architecture based on Beidou navigation satellite system[J]. Space Electronic Technology, 14, 1-6(2017).

    [3] Meng F Q. Method for determining satellite clock offset based on two-way time transfer between satellite and ground Xi’an: National Time Service Center,[D]. Chinese Academy of Sciences(2013).

    [4] [4] Meng FQ, Yang XH, Ou JK, et al. and inter-satellite[J]. Advanced MaterialsResearch, 2013, 718/719/720: 474- 479.

    [5] Liu X G. Study on high precision time synchronization method in satellite navigation and positioning system[D]. Zhengzhou: Information Engineering University(2008).

    [6] Tang G F, Yang W F, Su R R et al. Time synchronization method base on combined satellite-ground and inter-satellite observation[J]. Geomatics and Information Science of Wuhan University, 43, 183-187(2018).

    [7] Quan R, Dong R, Zhai Y et al. Simulation and realization of a second-order quantum-interference-based quantum clock synchronization at the femtosecond level[J]. Optics Letters, 44, 614-617(2019).

    [8] Giovannetti V, Lloyd S, Maccone L et al. Clock synchronization with dispersion cancellation[J]. Physical Review Letters, 87, 117902(2001).

    [9] Wang J C, Tian Z H, Jing J L et al. Influence of relativistic effects on satellite-based clock synchronization[J]. Physical Review D, 93, 065008(2016).

    [10] [10] ZhuJ, PengH, XiaoX, et al., 2013, XLIII( 2): 373- 381.

    [11] Giovannetti V, Lloyd S, Maccone L et al. Conveyor-belt clock synchronization[J]. Physical Review A, 70, 043808(2004).

    [12] Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 59, 2044-2046(1987).

    [13] Quan R, Zhai Y, Wang M et al. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons[J]. Scientific Reports, 6, 30453(2016).

    [14] Li M. The theoretical and experimental investigation of quantum correlation and quantum non-contextuality based on optical system[D]. Hefei: University of Science and Technology of China(2017).

    [15] Fang C, Huang P. Research on second-order correlation function of entangled state affected by dispersion[J]. Journal of Hefei University of Technology (Natural Science), 37, 1328-1331, 1371(2014).

    [16] Zhai Y W. Characterization of frequency entangled source and the application investigation in conveyor-belt quantum clock synchronization Xi’an: National Time Service Center,[D]. Chinese Academy of Sciences(2019).

    [17] Miao J J. The clock synchronization technology and applications based on high order correlation properties Xi'an:[D]. Northwest University(2015).

    Tools

    Get Citation

    Copy Citation Text

    Yongfei Liu, Chunyan Yang, Luhan Zhao, Zhaoheng Ren, Tianli Wei, Dewei Wu. Satellite Clock Offset Measurement Based on Conveyor Belt Quantum Entangled Light[J]. Acta Optica Sinica, 2022, 42(4): 0427001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Jul. 9, 2021

    Accepted: Aug. 27, 2021

    Published Online: Jan. 29, 2022

    The Author Email: Chunyan Yang (ycy220@163.com)

    DOI:10.3788/AOS202242.0427001

    Topics