Laser & Optoelectronics Progress, Volume. 58, Issue 22, 2211002(2021)

Fish Recognition Method for Underwater Video Based on Image Enhancement

Wenjing Yang, Ming Chen, and Guofu Feng*
Author Affiliations
  • College of Information Technology, Key Laboratory of Fisheries Information, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
  • show less
    Figures & Tables(14)
    Flowchart of proposed method
    Main flowchart of FUnIE-GAN
    Network architecture of FUnIE-GAN. (a) Generator (five encoders-decoders designed according to principle of U-Net); (b) discriminator (Markov discriminator model)
    YOLOv4 network structure
    Renderings of different underwater image enhancement methods. (a) Original image; (b) method proposed by Ancuti et al.[8]; (c) CLAHE[19]; (d) GUM[7]; (e) MSRCR[16]; (f) UDCP[20]; (g) DCP[10]; (h) FUnIE-GAN; (i) proposed method
    Variations in IOU and mAP with iterations. (a) Variation in IOU with iterations; (b) variation in mAP with iterations
    Detection results. (a) Zaccop; (b) zaccop and opsarichthys; (c) pseudorasbora; (d) zaccop and pseudorasbora
    • Table 1. Comparison of AG and UIQM of method proposed by Ancuti et al.[8], CLAHE[19], GUM[7], and MSRCR[16]

      View table

      Table 1. Comparison of AG and UIQM of method proposed by Ancuti et al.[8], CLAHE[19], GUM[7], and MSRCR[16]

      ImageFig. 5(b)Fig. 5(c)Fig. 5(d)Fig. 5(e)
      AGUIQMAGUIQMAGUIQMAGUIQM
      12.5173.5854.3693.6353.6363.7213.9883.912
      23.4133.5753.6113.5072.7853.5333.3154.546
      34.2113.5623.7593.5522.9713.6013.9684.950
      44.1302.2903.5502.1212.7643.3493.1253.042
      Average3.5683.2533.8223.2043.0393.5513.5994.113
    • Table 2. Comparison of AG and UIQM of UDCP[20],DCP[10],FUnIE-GAN, and proposed method

      View table

      Table 2. Comparison of AG and UIQM of UDCP[20],DCP[10],FUnIE-GAN, and proposed method

      ImageFig. 5(f)Fig. 5(g)Fig. 5(h)Fig. 5(l)
      AGUIQMAGUIQMAGUIQMAGUIQM
      12.9174.1993.0963.7521.8392.8323.9444.490
      22.0344.1102.2713.5112.9922.8433.7924.467
      32.8614.2842.8213.5952.9463.0693.8834.501
      42.5452.5482.6092.0081.8641.5363.7684.317
      Average2.5893.7852.6993.2172.4102.5703.8474.444
    • Table 3. Comparison of information entropy and UCIQE of method proposed by Ancuti et al.[8], CLAHE[19], GUM[7], and MSRCR[16]

      View table

      Table 3. Comparison of information entropy and UCIQE of method proposed by Ancuti et al.[8], CLAHE[19], GUM[7], and MSRCR[16]

      ImageFig. 5(b)Fig. 5(c)Fig. 5(d)Fig. 5(e)
      Information entropyUCIQEInformation entropyUCIQEInformation entropyUCIQEInformation entropyUCIQE
      16.9960.7746.3580.7915.8620.7077.0630.311
      26.8510.3645.7360.3855.3710.3726.6840.304
      36.9350.4876.0440.5025.6090.4346.5130.289
      46.7510.6825.9410.6885.4260.6556.0710.326
      Average6.8830.5776.0190.5915.5670.5426.5830.308
    • Table 4. Comparison of information entropy and UCIQE of UDCP[20],DCP[10],FUnIE-GAN, and proposed method

      View table

      Table 4. Comparison of information entropy and UCIQE of UDCP[20],DCP[10],FUnIE-GAN, and proposed method

      ImageFig. 5(f)Fig. 5(g)Fig. 5(h)Fig. 5(l)
      Information entropyUCIQEInformation entropyUCIQEInformation entropyUCIQEInformation entropyUCIQE
      16.9010.3286.9250.2186.9750.2757.4310.793
      26.9380.3256.9300.2337.1660.3997.1170.440
      37.1280.3457.0630.2707.0830.2367.2190.511
      47.0070.3126.9760.2127.0960.3107.1770.694
      Average6.9940.3286.9740.2337.0800.3057.2360.609
    • Table 5. Comparison of mAP of different target detection and image enhancement methods%

      View table

      Table 5. Comparison of mAP of different target detection and image enhancement methods%

      MethodFig. 5(a)Fig. 5(b)Fig. 5(c)Fig. 5(d)Fig. 5(e)Fig. 5(f)Fig. 5(g)Fig. 5(h)Fig. 5(l)
      Faster-RCNN65.0867.8668.5769.7868.2868.3669.6568.3471.47
      YOLOv375.3875.7275.8474.5373.6972.7574.3873.5682.13
      YOLOv482.5684.3384.6984.1283.7183.7884.5483.8989.59
    • Table 6. Comparison of different detection algorithms for targets in turbid waters

      View table

      Table 6. Comparison of different detection algorithms for targets in turbid waters

      MethodPrecisionRecallFPS /(frame·s-1)Training time /h
      Faster-RCNN0.950.791240
      YOLOv30.900.767937
      YOLOv40.930.919025
    • Table 7. mAP varying with iterations

      View table

      Table 7. mAP varying with iterations

      IterationsmAP /%
      10001.54
      1000075.70
      2000078.01
      3000080.23
      4000084.78
      5000089.59
      6000089.43
    Tools

    Get Citation

    Copy Citation Text

    Wenjing Yang, Ming Chen, Guofu Feng. Fish Recognition Method for Underwater Video Based on Image Enhancement[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2211002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Dec. 1, 2020

    Accepted: Jan. 21, 2021

    Published Online: Nov. 5, 2021

    The Author Email: Guofu Feng (gffeng@shou.edu.cn)

    DOI:10.3788/LOP202158.2211002

    Topics