Chinese Journal of Lasers, Volume. 44, Issue 2, 201005(2017)
Advances in High Power Raman Fiber Laser Technology
[1] [1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: Current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.
[2] [2] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 2006, 78(4): 1135-1184.
[3] [3] Dudley J M, Taylor J R. Supercontinuum generation in optical fibers[M]. Cambridge: Cambridge University Press, 2010.
[4] [4] Zlobina E A, Kablukov S I, Babin S A. Tunable CW all-fiber optical parametric oscillator operating below 1 μm[J]. Optics Express, 2013, 21(6): 6777-6782.
[5] [5] Murray R T, Kelleher E J R, Popov S V, et al. Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion[J]. Optics Express, 2013, 21(13): 15826-15833.
[6] [6] Agrawal G P. Nonlinear fiber optics[M]. New York: Academic Press, 2007.
[7] [7] Dianov E M, Prokhorov A M. Medium-power CW Raman fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1022-1028.
[8] [8] Supradeepa V R, Nicholson J W. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers[J]. Optics Letters, 2013, 38(14): 2538-2541.
[9] [9] Zhang L, Jiang H, Yang X, et al. Ultra-wide wavelength tuning of a cascaded Raman random fiber laser[J]. Optics Letters, 2016, 41(2): 215-218.
[10] [10] Zhang L, Liu C, Jiang H, et al. Kilowatt ytterbium-Raman fiber laser[J]. Optics Express, 2014, 22(15): 18483-18489.
[11] [11] Zhang H, Tao R, Zhou P, et al. 1.5-kW Yb-Raman combined nonlinear fiber amplifier at 1120 nm[J]. IEEE Photonics Technology Letters, 2015, 27(6): 628-630.
[12] [12] Xiao Q, Yan P, Li D, et al. Bidirectional pumped high power Raman fiber laser[J]. Optics Express, 2016, 24(6): 6758-6768.
[13] [13] Bernier M, Fortin V, Elamraoui M, et al. 3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber[J]. Optics Letters, 2014, 39(7): 2052-2055.
[14] [14] Feng Y, Taylor L R, Calia D B. 150 W highly-efficient Raman fiber laser[J]. Optics Express, 2009, 17(26): 23678-23683.
[15] [15] Jiang H W, Zhang L, Feng Y. Silica-based fiber Raman laser at >2.4 μm[J]. Optics Letters, 2015, 40(14): 3249-3252.
[16] [16] Supradeepa V R, Nichsolson J W, Headley C E, et al. A high efficiency architecture for cascaded Raman fiber lasers[J]. Optics Express, 2013, 21(6): 7148-7155.
[17] [17] Dianov E M. Advances in Raman fibers[J]. Journal of Lightwave Technology, 2002, 20(8): 1457-1462.
[18] [18] Fortin V, Bernier M, Carrier J, et al. Fluoride glass Raman fiber laser at 2185 nm[J]. Optics Letters, 2011, 36(21): 4152-4154.
[19] [19] Fortin V, Bernier M, Faucher D, et al. 3.7 W fluoride glass Raman fiber laser operating at 2231 nm[J]. Optics Express, 2012, 20(17): 19412-19419.
[20] [20] Jackson S D, Anzueto-Sánchez G. Chalcogenide glass Raman fiber laser[J]. Applied Physics Letters, 2006, 88(22): 221106.
[21] [21] Bernier M, Fortin V, Caron N, et al. Mid-infrared chalcogenide glass Raman fiber laser[J]. Optics Letters, 2013, 38(2): 127-129.
[22] [22] Stolen R H, Ippen E P. Raman gain in glass optical waveguides[J]. Applied Physics Letters, 1973, 22(6): 276-278.
[23] [23] Bromage J. Raman amplification for fiber communications systems[J]. Journal of Lightwave Technology, 2004, 22(1): 79-93.
[24] [24] Babin S A, Churkin D V, Ismagulov A E, et al. Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser[J]. Journal of the Optical Society of America B, 2007, 24(8): 1729-1738.
[25] [25] Vallée R, Bélanger E, Déry B, et al. Highly efficient and high-power Raman fiber laser based on broadband chirped fiber Bragg gratings[J]. Journal of Lightwave Technology, 2006, 24(12): 5039-5043.
[26] [26] Babin S A, Churkin D V, Podivilov E V. Intensity interactions in cascades of a two-stage Raman fiber laser[J]. Optics Communications, 2003, 226(1): 329-335.
[27] [27] Emori Y, Tanaka K, Headley C, et al. High-power cascaded Raman fiber laser with 41-W output power at 1480-nm band[C]. IEEE Conference on Lasers and Electro-Optics (CLEO), 2007: 9850926.
[28] [28] Nicholson J W, Yan M F, Wisk P, et al. Raman fiber laser with 81 W output power at 1480 nm[J]. Optics Letters, 2010, 35(18): 3069-3071.
[29] [29] Rakich P T, Fink Y, Soljacˇic' M. Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers[J]. Optics Letters, 2008, 33(15): 1690-1692.
[30] [30] Zhang L, Jiang H, Cui S, et al. Integrated Ytterbium-Raman fiber amplifier[J]. Optics Letters, 2014, 39(7): 1933-1936.
[31] [31] Feng Y. High power Raman fiber lasers: Recent progress[C]. Frontiers in Optics, 2015: FTh2F. 1.
[32] [32] Ma P, Zhang H, Huang L, et al. Kilowatt-level near-diffraction-limited and linear-polarized Ytterbium-Raman hybrid nonlinear amplifier based on polarization selection loss mechanism[J]. Optics Express, 2015, 23(20): 26499-26508.
[33] [33] Ageorges N, Dainty C. Laser guide star adaptive optics for astronomy[M]. Springer Science & Business Media, 2013.
[34] [34] Feng Y, Huang S, Shirakawa A, et al. 589 nm light source based on Raman fiber laser[J]. Japanese Journal of Applied Physics, 2004, 43(6A): L722-L724.
[35] [35] Feng Y, Taylor L, Calia D B. Multiwatts narrow linewidth fiber Raman amplifiers[J]. Optics Express, 2008, 16(15): 10927-10932.
[36] [36] Feng Y, Taylor L R, Calia D B. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star[J]. Optics Express, 2009, 17(21): 19021-19026.
[37] [37] Zhang L, Hu J, Wang J, et al. Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star[J]. Optics Letters, 2012, 37(22): 4796-4798.
[38] [38] Zhang L, Jiang H, Cui S, et al. Versatile Raman fiber laser for sodium laser guide star[J]. Laser & Photonics Reviews, 2014, 8(6): 889-895.
[39] [39] Robin C, Dajani I. Acoustically segmented photonic crystal fiber for single-frequency high-power laser applications[J]. Optics Letters, 2011, 36(14): 2641-2643.
[40] [40] Vergien C, Dajani I, Robin C. 18 W single-stage single-frequency acoustically tailored Raman fiber amplifier[J]. Optics Letters, 2012, 37(10): 1766-1768.
[41] [41] Dajani I, Vergien C, Robin C, et al. Investigations of single-frequency Raman fiber amplifiers operating at 1178 nm[J]. Optics Express, 2013, 21(10): 12038-12052.
[42] [42] Engelbrecht R. Analysis of SBS gain shaping and threshold increase by arbitrary strain distributions[J]. Journal of Lightwave Technology, 2014, 32(9): 1689-1700.
[43] [43] First Light of New Laser at Paranal[R]. [2016-10-10]. http://www.eso.org/public/announcements/ann15034/.
[44] [44] W. M. Keck Observatory. $4 Million Laser Marks Ground Zero for Adaptive Optics Science[R]. [2016-10-10]. http://www.keckobservatory.org/recent/entry/4_million_laser_marks_ground_zero_for_adaptive_optics_science.
[45] [45] Boyer C, Ellerbroek B. Adaptive optics program update at TMT[C]. SPIE, 2016, 9909: 990908.
[46] [46] Luo P L, Hu J, Feng Y, et al. Doppler-free intermodulated fluorescence spectroscopy of 4He 23P-31, 3D transitions at 588 nm with a 1-W compact laser system[J]. Applied Physics B, 2015, 120(2): 279-284.
[47] [47] Zhang L, Jiang H, Yang X, et al. High-power single-frequency 1336 nm Raman fiber amplifier[J]. Journal of Lightwave Technology, 2016, 34(21): 4907-4911.
[48] [48] Nilsson J, Sahu J K, Jang J N, et al. Cladding-pumped Raman fiber amplifier[C]. Optical Amplifiers and Their Applications, 2002: PD2
[49] [49] Codemard C A, Ji J, Sahu J K, et al. 100 W CW cladding-pumped Raman fiber laser at 1120 nm[C]. SPIE, 2010, 7580: 75801N.
[50] [50] Ji J, Codemard C A, Ibsen M, et al. Analysis of the conversion to the first Stokes in cladding-pumped fiber Raman amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 129-139.
[51] [51] Jiang H, Zhang L, Feng Y. Cascaded-cladding-pumped cascaded Raman fiber amplifier[J]. Optics Express, 2015, 23(11): 13947-13952.
[52] [52] Ji J, Codemard C A, Sahu J K, et al. Design, performance, and limitations of fibers for cladding-pumped Raman lasers[J]. Optical Fiber Technology, 2010, 16(6): 428-441.
[53] [53] Kablukov S I, Dontsova E I, Zlobina E A, et al. An LD-pumped Raman fiber laser operating below 1 μm[J]. Laser Physics Letters, 2013, 10(8): 085103.
[54] [54] Yao T, Nilsson J. 835 nm fiber Raman laser pulse pumped by a multimode laser diode at 806 nm[J]. Journal of the Optical Society of America B, 2014, 31(4): 882-888.
[55] [55] Babin S A, Dontsova E I, Kablukov S I. Random fiber laser directly pumped by a high-power laser diode[J]. Optics Letters, 2013, 38(17): 3301-3303.
[56] [56] Yao T, Harish A V, Sahu J K, et al. High-power continuous-wave directly-diode-pumped fiber Raman lasers[J]. Applied Sciences, 2015, 5(4): 1323-1336.
[57] [57] Glick Y, Fromzel V, Zhang J, et al. High power, high efficiency diode pumped Raman fiber laser[J]. Laser Physics Letters, 2016, 13(6): 065101.
[58] [58] Terry N B, Alley T G, Russell T H. An explanation of SRS beam cleanup in graded-index fibers and the absence of SRS beam cleanup in step-index fibers[J]. Optics Express, 2007, 15(26): 17509-17519.
[59] [59] Feng Y, Zhang L, Jiang H. Power scaling of Raman fiber lasers[C]. SPIE, 2015, 9344: 93440U.
Get Citation
Copy Citation Text
Feng Yan, Jiang Huawei, Zhang Lei. Advances in High Power Raman Fiber Laser Technology[J]. Chinese Journal of Lasers, 2017, 44(2): 201005
Category: laser devices and laser physics
Received: Oct. 10, 2016
Accepted: --
Published Online: Feb. 22, 2017
The Author Email: