Chinese Journal of Lasers, Volume. 44, Issue 2, 201005(2017)

Advances in High Power Raman Fiber Laser Technology

Feng Yan, Jiang Huawei, and Zhang Lei
Author Affiliations
  • [in Chinese]
  • show less
    References(59)

    [1] [1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: Current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.

    [2] [2] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 2006, 78(4): 1135-1184.

    [3] [3] Dudley J M, Taylor J R. Supercontinuum generation in optical fibers[M]. Cambridge: Cambridge University Press, 2010.

    [4] [4] Zlobina E A, Kablukov S I, Babin S A. Tunable CW all-fiber optical parametric oscillator operating below 1 μm[J]. Optics Express, 2013, 21(6): 6777-6782.

    [5] [5] Murray R T, Kelleher E J R, Popov S V, et al. Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion[J]. Optics Express, 2013, 21(13): 15826-15833.

    [6] [6] Agrawal G P. Nonlinear fiber optics[M]. New York: Academic Press, 2007.

    [7] [7] Dianov E M, Prokhorov A M. Medium-power CW Raman fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1022-1028.

    [8] [8] Supradeepa V R, Nicholson J W. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers[J]. Optics Letters, 2013, 38(14): 2538-2541.

    [9] [9] Zhang L, Jiang H, Yang X, et al. Ultra-wide wavelength tuning of a cascaded Raman random fiber laser[J]. Optics Letters, 2016, 41(2): 215-218.

    [10] [10] Zhang L, Liu C, Jiang H, et al. Kilowatt ytterbium-Raman fiber laser[J]. Optics Express, 2014, 22(15): 18483-18489.

    [11] [11] Zhang H, Tao R, Zhou P, et al. 1.5-kW Yb-Raman combined nonlinear fiber amplifier at 1120 nm[J]. IEEE Photonics Technology Letters, 2015, 27(6): 628-630.

    [12] [12] Xiao Q, Yan P, Li D, et al. Bidirectional pumped high power Raman fiber laser[J]. Optics Express, 2016, 24(6): 6758-6768.

    [13] [13] Bernier M, Fortin V, Elamraoui M, et al. 3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber[J]. Optics Letters, 2014, 39(7): 2052-2055.

    [14] [14] Feng Y, Taylor L R, Calia D B. 150 W highly-efficient Raman fiber laser[J]. Optics Express, 2009, 17(26): 23678-23683.

    [15] [15] Jiang H W, Zhang L, Feng Y. Silica-based fiber Raman laser at >2.4 μm[J]. Optics Letters, 2015, 40(14): 3249-3252.

    [16] [16] Supradeepa V R, Nichsolson J W, Headley C E, et al. A high efficiency architecture for cascaded Raman fiber lasers[J]. Optics Express, 2013, 21(6): 7148-7155.

    [17] [17] Dianov E M. Advances in Raman fibers[J]. Journal of Lightwave Technology, 2002, 20(8): 1457-1462.

    [18] [18] Fortin V, Bernier M, Carrier J, et al. Fluoride glass Raman fiber laser at 2185 nm[J]. Optics Letters, 2011, 36(21): 4152-4154.

    [19] [19] Fortin V, Bernier M, Faucher D, et al. 3.7 W fluoride glass Raman fiber laser operating at 2231 nm[J]. Optics Express, 2012, 20(17): 19412-19419.

    [20] [20] Jackson S D, Anzueto-Sánchez G. Chalcogenide glass Raman fiber laser[J]. Applied Physics Letters, 2006, 88(22): 221106.

    [21] [21] Bernier M, Fortin V, Caron N, et al. Mid-infrared chalcogenide glass Raman fiber laser[J]. Optics Letters, 2013, 38(2): 127-129.

    [22] [22] Stolen R H, Ippen E P. Raman gain in glass optical waveguides[J]. Applied Physics Letters, 1973, 22(6): 276-278.

    [23] [23] Bromage J. Raman amplification for fiber communications systems[J]. Journal of Lightwave Technology, 2004, 22(1): 79-93.

    [24] [24] Babin S A, Churkin D V, Ismagulov A E, et al. Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser[J]. Journal of the Optical Society of America B, 2007, 24(8): 1729-1738.

    [25] [25] Vallée R, Bélanger E, Déry B, et al. Highly efficient and high-power Raman fiber laser based on broadband chirped fiber Bragg gratings[J]. Journal of Lightwave Technology, 2006, 24(12): 5039-5043.

    [26] [26] Babin S A, Churkin D V, Podivilov E V. Intensity interactions in cascades of a two-stage Raman fiber laser[J]. Optics Communications, 2003, 226(1): 329-335.

    [27] [27] Emori Y, Tanaka K, Headley C, et al. High-power cascaded Raman fiber laser with 41-W output power at 1480-nm band[C]. IEEE Conference on Lasers and Electro-Optics (CLEO), 2007: 9850926.

    [28] [28] Nicholson J W, Yan M F, Wisk P, et al. Raman fiber laser with 81 W output power at 1480 nm[J]. Optics Letters, 2010, 35(18): 3069-3071.

    [29] [29] Rakich P T, Fink Y, Soljacˇic' M. Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers[J]. Optics Letters, 2008, 33(15): 1690-1692.

    [30] [30] Zhang L, Jiang H, Cui S, et al. Integrated Ytterbium-Raman fiber amplifier[J]. Optics Letters, 2014, 39(7): 1933-1936.

    [31] [31] Feng Y. High power Raman fiber lasers: Recent progress[C]. Frontiers in Optics, 2015: FTh2F. 1.

    [32] [32] Ma P, Zhang H, Huang L, et al. Kilowatt-level near-diffraction-limited and linear-polarized Ytterbium-Raman hybrid nonlinear amplifier based on polarization selection loss mechanism[J]. Optics Express, 2015, 23(20): 26499-26508.

    [33] [33] Ageorges N, Dainty C. Laser guide star adaptive optics for astronomy[M]. Springer Science & Business Media, 2013.

    [34] [34] Feng Y, Huang S, Shirakawa A, et al. 589 nm light source based on Raman fiber laser[J]. Japanese Journal of Applied Physics, 2004, 43(6A): L722-L724.

    [35] [35] Feng Y, Taylor L, Calia D B. Multiwatts narrow linewidth fiber Raman amplifiers[J]. Optics Express, 2008, 16(15): 10927-10932.

    [36] [36] Feng Y, Taylor L R, Calia D B. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star[J]. Optics Express, 2009, 17(21): 19021-19026.

    [37] [37] Zhang L, Hu J, Wang J, et al. Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star[J]. Optics Letters, 2012, 37(22): 4796-4798.

    [38] [38] Zhang L, Jiang H, Cui S, et al. Versatile Raman fiber laser for sodium laser guide star[J]. Laser & Photonics Reviews, 2014, 8(6): 889-895.

    [39] [39] Robin C, Dajani I. Acoustically segmented photonic crystal fiber for single-frequency high-power laser applications[J]. Optics Letters, 2011, 36(14): 2641-2643.

    [40] [40] Vergien C, Dajani I, Robin C. 18 W single-stage single-frequency acoustically tailored Raman fiber amplifier[J]. Optics Letters, 2012, 37(10): 1766-1768.

    [41] [41] Dajani I, Vergien C, Robin C, et al. Investigations of single-frequency Raman fiber amplifiers operating at 1178 nm[J]. Optics Express, 2013, 21(10): 12038-12052.

    [42] [42] Engelbrecht R. Analysis of SBS gain shaping and threshold increase by arbitrary strain distributions[J]. Journal of Lightwave Technology, 2014, 32(9): 1689-1700.

    [43] [43] First Light of New Laser at Paranal[R]. [2016-10-10]. http://www.eso.org/public/announcements/ann15034/.

    [44] [44] W. M. Keck Observatory. $4 Million Laser Marks Ground Zero for Adaptive Optics Science[R]. [2016-10-10]. http://www.keckobservatory.org/recent/entry/4_million_laser_marks_ground_zero_for_adaptive_optics_science.

    [45] [45] Boyer C, Ellerbroek B. Adaptive optics program update at TMT[C]. SPIE, 2016, 9909: 990908.

    [46] [46] Luo P L, Hu J, Feng Y, et al. Doppler-free intermodulated fluorescence spectroscopy of 4He 23P-31, 3D transitions at 588 nm with a 1-W compact laser system[J]. Applied Physics B, 2015, 120(2): 279-284.

    [47] [47] Zhang L, Jiang H, Yang X, et al. High-power single-frequency 1336 nm Raman fiber amplifier[J]. Journal of Lightwave Technology, 2016, 34(21): 4907-4911.

    [48] [48] Nilsson J, Sahu J K, Jang J N, et al. Cladding-pumped Raman fiber amplifier[C]. Optical Amplifiers and Their Applications, 2002: PD2

    [49] [49] Codemard C A, Ji J, Sahu J K, et al. 100 W CW cladding-pumped Raman fiber laser at 1120 nm[C]. SPIE, 2010, 7580: 75801N.

    [50] [50] Ji J, Codemard C A, Ibsen M, et al. Analysis of the conversion to the first Stokes in cladding-pumped fiber Raman amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 129-139.

    [51] [51] Jiang H, Zhang L, Feng Y. Cascaded-cladding-pumped cascaded Raman fiber amplifier[J]. Optics Express, 2015, 23(11): 13947-13952.

    [52] [52] Ji J, Codemard C A, Sahu J K, et al. Design, performance, and limitations of fibers for cladding-pumped Raman lasers[J]. Optical Fiber Technology, 2010, 16(6): 428-441.

    [53] [53] Kablukov S I, Dontsova E I, Zlobina E A, et al. An LD-pumped Raman fiber laser operating below 1 μm[J]. Laser Physics Letters, 2013, 10(8): 085103.

    [54] [54] Yao T, Nilsson J. 835 nm fiber Raman laser pulse pumped by a multimode laser diode at 806 nm[J]. Journal of the Optical Society of America B, 2014, 31(4): 882-888.

    [55] [55] Babin S A, Dontsova E I, Kablukov S I. Random fiber laser directly pumped by a high-power laser diode[J]. Optics Letters, 2013, 38(17): 3301-3303.

    [56] [56] Yao T, Harish A V, Sahu J K, et al. High-power continuous-wave directly-diode-pumped fiber Raman lasers[J]. Applied Sciences, 2015, 5(4): 1323-1336.

    [57] [57] Glick Y, Fromzel V, Zhang J, et al. High power, high efficiency diode pumped Raman fiber laser[J]. Laser Physics Letters, 2016, 13(6): 065101.

    [58] [58] Terry N B, Alley T G, Russell T H. An explanation of SRS beam cleanup in graded-index fibers and the absence of SRS beam cleanup in step-index fibers[J]. Optics Express, 2007, 15(26): 17509-17519.

    [59] [59] Feng Y, Zhang L, Jiang H. Power scaling of Raman fiber lasers[C]. SPIE, 2015, 9344: 93440U.

    CLP Journals

    [1] Chen Xiaolong, Zheng Ye, Li Xuan, Pi Haoyang, Zhao Chun, Liu Kai, Quan Zhao, Shen Hui, Yang Yifeng, He Bing, Zhou Jun. 10.6 GHz Linewidth Maintained Random Fiber Laser Seed Source[J]. Chinese Journal of Lasers, 2017, 44(7): 701005

    [2] Li Guangji, Lu Jian, Wang Chengmin, Zhang Hongchao, Zhou Dayong. Simulation of Laser Irradiation of One-Dimensional In0.3Ga0.7As Solar Cells[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101601

    [3] Yuan Muye, Liu Bo, Wang Tianliang, Xu Zhikang. Sawtooth Waveform Generation Based on Two Parallel Mach-Zehnder Modulators[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70701

    Tools

    Get Citation

    Copy Citation Text

    Feng Yan, Jiang Huawei, Zhang Lei. Advances in High Power Raman Fiber Laser Technology[J]. Chinese Journal of Lasers, 2017, 44(2): 201005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Oct. 10, 2016

    Accepted: --

    Published Online: Feb. 22, 2017

    The Author Email:

    DOI:10.3788/cjl201744.0201005

    Topics