Journal of Semiconductors, Volume. 40, Issue 1, 011801(2019)
Growth and fundamentals of bulk β-Ga2O3 single crystals
[1] S Geller. Crystal structure of β-Ga2O3. J Chem Phys, 33, 676(1960).
[2] R Roy, V G Hill, E F J Osborn. Polymorphism of Ga2O3 and the System Ga2O3−H2O. Am Chem Soc, 74, 719(1952).
[3] H H Tippins. Optical absorption and photoconductivity in the band edge of β−Ga2O3. Phys Rev, 140, A316(1965).
[4] Z Hajnal, J Miro, G Kiss et al. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3. J Appl Phys, 86, 3792(1999).
[5] J A Kohn, G Katz, J D Broder. Characterization of β-Ga2O3 and its alumina Isomorph θ-Al2O3. Am Minerol, 42, 398(1956).
[6] G M Wolten, A B Chase. Determination of the point group of β-Ga2O3 from morphology and physical properties. J Solid State Chem, 16, 377(1976).
[7] J Ahman, G mSvensson, J Albertsson. A reinvestigation of β-gallium oxide. Acta Crystallogr Sect C Cryst Struct Commun, 52, 1336(1996).
[8] C Janowitz, V Scherer, M Mohamed et al. Experimental electronic structure of In2O3 and Ga2O3. New J Phys, 13, 085014(2011).
[9] S Yoshioka, H Hayashi, A Kuwabara et al. Structures and energetics of Ga2O3 polymorphs. J Phys Condens Matter, 19, 346211(2007).
[10] K Yamaguchi. First principles study on electronic structure of β-Ga2O3. Solid State Commun, 131, 739(2004).
[11] H He, R Orlando, M Blanco et al. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 74, 195123(2006).
[12] Y Zhang, J Yan, G Zhao et al. First-principles study on electronic structure and optical properties of Sn-doped β-Ga2O3. Physical B Condens Matter, 405, 3899(2010).
[13] L Zhang, J Yan, Y Zhang et al. First principles study on electronic structure and optical properties of N-doped P-type β-Ga2O3. Sci China Phys, Mech Astron, 55, 19(2012).
[14] H Peelaers, C G Van de Walle. Brillouin zone and band structure of β-Ga2O3. Phys Status Solidi B, 252, 828(2015).
[15] J B Varley, J R Weber, A Janotti et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 97, 142106(2010).
[16] K Nassau. Dr. A. V. L. Verneuil: The man and the method. J of Cry Growth, 13, 12(1972).
[17] A B Chase. Growth of β-Ga2O3 by the Verneuil technique. J Am Ceram Soc, 47, 470(1964).
[18] M R Lorenz, J F Woods, R J Gambino. Some electrical properties of the semiconductor
[19] T Harwig, J Schoonman. Electrical properties of β-Ga2O3 single crystals. J Solid State Chem II, 23, 205(1978).
[20] T Harwig, G J Wubs, G J Dirksen. Electrical properties of
[21]
[22] E G Víllora, K Shimamura, Y Yoshikawa et al. Large-size β-Ga2O3 single crystals and wafers. Journal of Crystal Growth, 270, 420(2004).
[23] J Zhang, B Li, C Xia et al. Growth and spectral characterization of β-Ga2O3 single crystals. Journal of Physics and Chemistry of Solids, 67, 2448(2006).
[24] J Czochralski. A new method for the measurement of the crystallization rate of metals. Zeitschrift für Physikalische Chemie, 92, 219(1918).
[25] Z Galazka, R Uecker, K Irmscher et al. Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst Res Technol, 45, 1229(2010).
[26] Y Tomm, P Reiche, D Klimm et al. Czochralski grown Ga2O3 crystals. J Cryst Growth, 220, 510(2000).
[27] Z Galazka, R Uecker, D Klimm et al. Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method. ECS Journal of Solid State Science and Technology, 6, Q3007(2017).
[28] Z Galazka, S Ganschow, A Fiedler et al. Doping of Czochralski-grown bulk β-Ga2O3 single crystals with Cr, Ce and Al. J Cry Growth, 486, 82(2018).
[29] H E LaBelle, B Chalmers, A I Mlavsky. Growth of controlled profile crystals from the melt: Part III — Theory. Mater Res Bull, 6, 681(1971).
[30] H LaBelle, A Mlavsky. Growth of controlled profile crystals from the melt: Part I - Sapphire filaments. Materials Research Bulletin, 6, 571(1971).
[31] H LaBelle Jr. Growth of controlled profile crystals from the melt: Part II - Edge-defined, film-fed growth (EFG). Materials Research Bulletin, 6, 581(1971).
[32] H Aida, K Nishiguchi, H Takeda et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Japanese Journal of Applied Physics, 47, 8506(2008).
[33] W Mu, Z Jia, Y Yin et al. High quality crystal growth and anisotropic physical characterization of
[34] A Kuramata, K Koshi, S Watanabe et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys, 55, 1202A(2016).
[35]
[36] S N Zhang, X Z Lian, Y C Ma et al. Growth and characterization of 2-inch high quality
[37] P W Bridgman. Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc, and tin. Proceedings of the American Academy of Arts and Sciences, 60, 305(1925).
[38] D C Stockbarger. The production of large single crystals of lithium fluoride. Review of Scientific Instruments, 7, 133(1936).
[39] K Hoshikawa, E Ohba, T Kobayashi et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. Journal of Crystal Growth, 447, 36(2016).
[40] E Ohba, T Kobayashi, M Kado et al. Defect characterization of β-Ga2O3 single crystals grown by vertical Bridgman method. Jpn J Appl Phys, 55, 1202BF(2016).
[41] J Y Tsao, S Chowdhury, M A Hollis et al. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Adv. Electron Mater, 4, 1600501(2018).
[42] N Suzuki, S Ohira, M Tanaka et al. Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal. Phys Status Solidi (C), 4, 2310(2007).
[43] N Ueda, H Hosono, R Waseda et al. Synthesis and control of conductivity of ultraviolet transmitting single crystals. Appl Phys Lett, 70, 3561(1997).
[44] S Ohira, N Suzuki, N Arai et al. Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing. Thin Solid Films, 516, 5763(2008).
[45] E G VÍllora, K Shimamura, Y Yoshikaw et al. Electrical conductivity and carrier concentration control in by Si doping. Appl Phys Lett, 92, 202120(2008).
[46] K Sasaki, M Higashiwaki, A Kuramata et al. Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts. Appl Phys Express, 6, 6502(2013).
[47] W Zhou, C Xia, Q Sai et al. Controlling n-type conductivity of
[48] M A Mastro, A Kuramata, J Calkins et al. Perspective—opportunities and future directions for Ga2O3. J Solid State Sci Technol, 6, P356(2017).
[49] J B Varley, A Janotti, C Franchini et al. Role of self-trapping in luminescence and-type conductivity of wide-band-gap oxides. Phys Rev B, 85, 081109(2012).
[50] B E Kananen, L E Halliburton, K T Stevens et al. Gallium vacancies in β-Ga2O3 crystals. Appl Phys Lett, 110, 202104(2017).
[51] T Onuma, S Fujioka, T Yamaguchi et al. Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals. Appl Phys Lett, 103, 2013(2013).
[52] L L Liu, M K Li, D Q Yu et al. Fabrication and characteristics of N-doped β-Ga2O3 nanowires. Appl Phys A, 98, 831(2010).
[53] L Dong, R Jia, C Li et al. Ab initio study of N-doped β-Ga2O3 with intrinsic defects: the structural, electronic and optical properties. J Alloys Compd, 712, 379(2017).
[54] A Kyrtsos, M Matsubara, E Bellotti. On the feasibility of p-type Ga2O3. Appl Phy Lett, 112, 032108(2018).
[55] M Bartic, Y Toyoda, C I Baban et al. Oxygen sensitivity in gallium oxide thin films and single crystals at high temperatures. Jpn J Appl Phys, 45, 5186(2006).
[56] J L Hudgins, G S Simin, E Santi et al. An assessment of wide bandgap semiconductors for power devices. IEEE Trans Power Electron, 18, 907(2003).
[57] M Higashiwaki, K Sasaki, H Murakami et al. Recent progress in Ga2O3 power devices. Semiconductor Science and Technology, 31, 034001(2016).
[58] M Higashiwaki, K Sasaki, A Kuramata et al. Development of gallium oxide power devices. Physica Status Solidi (a), 211, 21(2014).
[59] T Oishi, Y Koga, K Harada et al. High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl Phys Express, 8, 031101(2015).
[60] K Sasaki, M Higashiwaki, A Kuramata et al. Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3(010) substrates. IEEE Electron Device Lett, 34, 493(2013).
[61] Z Z Hu, H Zhou, Q Feng et al. Field-plated lateral β-Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2. IEEE Electron Device Letters, 39, 1564(2018).
[62] M Higashiwaki, K Sasaki, A Kuramata et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal
[63] A J Green, K D Chabak, E R Heller et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett, 37, 902(2016).
[64] R Suzuki, S Nakagomi, Y Kokubun et al. Enhancement of responsivity in solar-blind photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing. Appl Phys Lett, 94, 222102(2009).
[65] C Yang, H Liang, Z Zhang et al. Self-powered SBD solar-blind photodetector fabricated on the single crystal of β-Ga2O3. RSC Adv, 8, 6341(2018).
[66] E Patrick, M Choudhury, F Ren et al. Simulation of radiation effects in AlGaN/GaN HEMTs. ECS J Solid State Sci Technol, 4, Q21(2015).
[67] J Yang, F Ren, S J Pearton et al. A 1.5 MeV electron irradiation damage in β-Ga2O3 vertical rectifiers. J Vac Sci Technol B, 35, 031208(2017).
[68] D Szalkai, Z Galazka, K Irmscher et al. β-Ga2O3 solid-state devices for fast neutron detection. IEEE Trans Nucl Sci, 64, 1248(2017).
Get Citation
Copy Citation Text
H. F. Mohamed, Changtai Xia, Qinglin Sai, Huiyuan Cui, Mingyan Pan, Hongji Qi. Growth and fundamentals of bulk β-Ga2O3 single crystals[J]. Journal of Semiconductors, 2019, 40(1): 011801
Category: Reviews
Received: Sep. 30, 2018
Accepted: --
Published Online: Sep. 18, 2021
The Author Email: