NUCLEAR TECHNIQUES, Volume. 46, Issue 4, 040004(2023)
Critical dynamical fluctuations near the QCD critical point
[2] Bethke S. Determination of the QCD coupling αs[J]. Journal of Physics G: Nuclear and Particle Physics, 26, R27–R66(2000).
[3] Gross D J, Wilczek F. Ultraviolet behavior of non-abelian gauge theories[J]. Physical Review Letters, 30, 1343-1346(1973).
[4] David Politzer H. Reliable perturbative results for strong interactions?[J]. Physical Review Letters, 30, 1346-1349(1973).
[5] Gell-Mann M, Oakes R J, Renner B. Behavior of current divergences under SU3×SU3[J]. Physical Review, 175, 2195-2199(1968).
[6] Wilson K G. Confinement of quarks[J]. Physical Review D, 10, 2445-2459(1974).
[7] Gyulassy M, McLerran L. New forms of QCD matter discovered at RHIC[J]. Nuclear Physics A, 750, 30-63(2005).
[8] Gyulassy M[M]. The QGP discovered at RHIC. Structure and Dynamics of Elementary Matter, 159-182(2004).
[9] Kolb P F, Heinz U[M]. Hydrodynamic description of ultrarelativistic heavy-ion collisions, 634-714(2004).
[10] Müller B, Schukraft J, Wysłouch B. First results from Pb+Pb collisions at the LHC[J]. Annual Review of Nuclear and Particle Science, 62, 361-386(2012).
[11] Friman B, Hohne C, Knoll J et al[M]. 2011 CBM physics book: compressed baryonic matter laboratory experiments, 814(2011).
[13] Ruan S, Yang J, Zhang J et al. Design of extraction system in Bring at HIAF[J]. Nuclear Instruments Methods A, 892, 53(2018).
[15] Bazavov A, Bhattacharya T, Cheng M et al. Chiral and deconfinement aspects of the QCD transition[J]. Physical Review D, 85, 054503(2012).
[16] Bazavov A, Ding H T, Hegde P et al. Chiral crossover in QCD at zero and non-zero chemical potentials[J]. Physics Letters B, 795, 15-21(2019).
[17] Steinbrecher Patrick. The QCD crossover at zero and non-zero baryon densities from Lattice QCD[J]. Nuclear Physics A, 982, 847-850(2019).
[18] Aoki Y, Endrődi G, Fodor Z et al. The order of the quantum chromodynamics transition predicted by the standard model of particle physics[J]. Nature, 443, 675-678(2006).
[19] Bazavov A, Collaboration U, Karsch F et al. Hot-dense lattice QCD[J]. The European Physical Journal A, 55, 194(2019).
[20] Ding H T, Karsch F, Mukherjee S. Thermodynamics of strong-interaction matter from lattice QCD[J]. International Journal of Modern Physics E, 24, 1530007(2015).
[21] Ratti C. Lattice QCD and heavy ion collisions: a review of recent progress[J]. Reports on Progress in Physics Physical Society (Great Britain), 81, 084301(2018).
[22] Fukushima K, Hatsuda T. The phase diagram of dense QCD[J]. Reports on Progress in Physics, 74, 014001(2011).
[23] Fukushima K, Sasaki C. The phase diagram of nuclear and quark matter at high baryon density[J]. Progress in Particle and Nuclear Physics, 72, 99-154(2013).
[24] Fischer C S. QCD at finite temperature and chemical potential from Dyson-Schwinger equations[J]. Progress in Particle and Nuclear Physics, 105, 1-60(2019).
[25] Fu W J. QCD at finite temperature and density within the fRG approach: an overview[J]. Communications in Theoretical Physics, 74, 097304(2022).
[26] Stephanov M. QCD phase diagram and the critical point[J]. Progress of Theoretical Physics Supplement, 153, 139-156(2004).
[28] Hands S. Simulating dense matter[J]. Progress of Theoretical Physics Supplement, 168, 253-260(2007).
[29] Gavai R V, Gupta S. Pressure and nonlinear susceptibilities in QCD at finite chemical potentials[J]. Physical Review D, 68, 034506(2003).
[30] Allton C R, Ejiri S, Hands S J et al. QCD thermal phase transition in the presence of a small chemical potential[J]. Physical Review D, 66, 074507(2002).
[31] Fodor Z, Katz S D. A new method to study lattice QCD at finite temperature and chemical potential[J]. Physics Letters B, 534, 87-92(2002).
[32] de Forcrand P, Philipsen O. The QCD phase diagram for small densities from imaginary chemical potential[J]. Nuclear Physics B, 642, 290-306(2002).
[33] Ding H T. New developments in lattice QCD on equilibrium physics and phase diagram[J]. Nuclear Physics A, 1005, 121940(2021).
[34] Braun-Munzinger P, Redlich K, Stachel J[M]. Particle production in heavy ion collisions, 491-599(2004).
[35] STAR Collaboration. STAR results from the RHIC beam energy scan-I[J]. Nuclear Physics A, 904–905, 256C-263C(2013).
[36] Randrup J, Cleymans J. Maximum freeze-out baryon density in nuclear collisions[J]. Physical Review C, 74, 047901(2006).
[37] Adam J, Adamczyk L, Adams J R et al. Nonmonotonic energy dependence of net-proton number fluctuations[J]. Physical Review Letters, 126, 092301(2021).
[38] Abdallah M S, Adam J, Adamczyk L et al. Cumulants and correlation functions of net-proton, proton, and antiproton multiplicity distributions in Au+Au collisions at energies available at the BNL Relativistic Heavy Ion Collider[J]. Physical Review C, 104, 024902(2021).
[39] Stephanov M A. Sign of kurtosis near the QCD critical point[J]. Physical Review Letters, 107, 052301(2011).
[40] Athanasiou C, Rajagopal K, Stephanov M. Using higher moments of fluctuations and their ratios in the search for the QCD critical point[J]. Physical Review D, 82, 074008(2010).
[41] Yang C. The STAR detector upgrades and physics in beam energy scan phase II[J]. EPJ Web of Conferences, 182, 02130(2018).
[42] Tlusty D. The RHIC beam energy scan Phase II: physics and upgrades[C]. arXiv(2018).
[44] Bzdak A, Esumi S, Koch V et al. Mapping the phases of quantum chromodynamics with beam energy scan[J]. Physics Reports, 853, 1-87(2020).
[45] Luo X F, Xu N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview[J]. Nuclear Science and Techniques, 28, 112(2017).
[46] Wu S J, Shen C, Song H C. Dynamically exploring the QCD matter at finite temperatures and densities: a short review[J]. Chinese Physics Letters, 38, 081201(2021).
[47] Stephanov M, Rajagopal K, Shuryak E. Event-by-event fluctuations in heavy ion collisions and the QCD critical point[J]. Physical Review D, 60, 114028(1999).
[48] Stephanov M, Rajagopal K, Shuryak E. Signatures of the tricritical point in QCD[J]. Physical Review Letters, 81, 4816-4819(1998).
[49] Hatta Y, Stephanov M A. Proton-number fluctuation as a signal of the QCD critical end point[J]. Physical Review Letters, 91, 102003(2003).
[50] Kitazawa M, Asakawa M. Relation between baryon number fluctuations and experimentally observed proton number fluctuations in relativistic heavy ion collisions[J]. Physical Review C, 86, 024904(2012).
[51] Kitazawa M, Asakawa M. Revealing baryon number fluctuations from proton number fluctuations in relativistic heavy ion collisions[J]. Physical Review C, 85, 021901(2012).
[52] Alba P, Alberico W, Bellwied R et al. Freeze-out conditions from net-proton and net-charge fluctuations at RHIC[J]. Physics Letters B, 738, 305-310(2014).
[53] Bazavov A, Bhattacharya T, DeTar C E et al. Fluctuations and correlations of net baryon number, electric charge, and strangeness: a comparison of lattice QCD results with the hadron resonance gas model[J]. Physical Review D, 86, 034509(2012).
[54] Bazavov A, Ding H T, Hegde P et al. Freeze-out conditions in heavy ion collisions from QCD thermodynamics[J]. Physical Review Letters, 109, 192302(2012).
[55] Borsányi S, Fodor Z, Katz S D et al. Freeze-out parameters: lattice meets experiment[J]. Physical Review Letters, 111, 062005(2013).
[56] Cheng M, Hegde P, Jung C et al. Baryon number, strangeness, and electric charge fluctuations in QCD at high temperature[J]. Physical Review D, 79, 074505(2009).
[57] Gupta S, Luo X, Mohanty B et al. Scale for the phase diagram of quantum chromodynamics[J]. Science, 332, 1525-1528(2011).
[58] Fu J H. Higher moments of net-proton multiplicity distributions in heavy ion collisions at chemical freeze-out[J]. Physics Letters B, 722, 144-150(2013).
[59] Garg P, Mishra D K, Netrakanti P K et al. Conserved number fluctuations in a hadron resonance gas model[J]. Physics Letters B, 726, 691-696(2013).
[60] Karsch F, Redlich K. Probing freeze-out conditions in heavy ion collisions with moments of charge fluctuations[J]. Physics Letters B, 695, 136-142(2011).
[61] Stephanov M A. Non-Gaussian fluctuations near the QCD critical point[J]. Physical Review Letters, 102, 032301(2009).
[62] Asakawa M, Ejiri S, Kitazawa M. Third moments of conserved charges as probes of QCD phase structure[J]. Physical Review Letters, 103, 262301(2009).
[63] Berdnikov B, Rajagopal K. Slowing out of equilibrium near the QCD critical point[J]. Physical Review D, 61, 105017(2000).
[64] Nonaka C, Asakawa M. Hydrodynamical evolution near the QCD critical end point[J]. Physical Review C, 71, 044904(2005).
[65] Ling B, Stephanov M A. Acceptance dependence of fluctuation measures near the QCD critical point[J]. Physical Review C, 93, 034915(2016).
[66] Jiang L J, Li P F, Song H C. Correlated fluctuations near the QCD critical point[J]. Physical Review C, 94, 024918(2016).
[67] Brewer J, Mukherjee S, Rajagopal K et al. Searching for the QCD critical point via the rapidity dependence of cumulants[J]. Physical Review C, 98, 061901(2018).
[68] Luo X F, Mohanty B, Ritter H G et al. Higher moments of net-proton multiplicity distributions[J]. Physics of Atomic Nuclei, 75, 676-678(2012).
[69] Adamczyk L, Adkins J K, Agakishiev G et al. Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC[J]. Physical Review Letters, 113, 92301.1-92301.7(2014).
[71] HADES Collaboration. Proton-number fluctuations in sNN=2.4 GeV Au+Au collisions studied with the High-Acceptance DiElectron Spectrometer (HADES)[J]. Physical Review C, 102, 024914(2020).
[73] Sakaida M, Asakawa M, Fujii H et al. Dynamical evolution of critical fluctuations and its observation in heavy ion collisions[J]. Physical Review C, 95, 064905(2017).
[74] Wu S J, Song H C. Universal scaling of conserved charge in stochastic diffusion dynamics[J]. Chinese Physics C, 43, 084103(2019).
[75] Sun K J, Chen L W, Ko C M et al. Light nuclei production as a probe of the QCD phase diagram[J]. Physics Letters B, 781, 499-504(2018).
[76] Sun K J, Chen L W, Ko C M et al. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions[J]. Physics Letters B, 774, 103-107(2017).
[78] Deng X G, Ma Y G. Light nuclei production in Au+Au collisions at sNN=7.7~80 GeV from UrQMD model[J]. Physics Letters B, 808, 135668(2020).
[79] Liu H, Zhang D W, He S et al. Light nuclei production in Au+Au collisions at sNN= 5~200 GeV from JAM model[J]. Physics Letters B, 805, 135452(2020).
[80] Sun K J, Ko C M, Lin Z W. Light nuclei production in a multiphase transport model for relativistic heavy ion collisions[J]. Physical Review C, 103, 064909(2021).
[81] Zhao W B, Shen C, Ko C M et al. Beam-energy dependence of the production of light nuclei in Au+Au collisions[J]. Physical Review C, 102, 044912(2020).
[82] Zhu L L, Wang B, Wang M et al. Energy and centrality dependence of light nuclei production in relativistic heavy-ion collisions[J]. Nuclear Science and Techniques, 33, 45(2022).
[83] DeMartini D, Shuryak E. Many-body forces and nucleon clustering near the QCD critical point[J]. Physical Review C, 104, 024908(2021).
[84] DeMartini D, Shuryak E. Nucleon clustering at kinetic freezeout of heavy-ion collisions via path-integral Monte Carlo[J]. Nuclear Physics A, 1016, 122336(2021).
[85] Shuryak E, Torres-Rincon J M. Baryon clustering at the critical line and near the hypothetical critical point in heavy-ion collisions[J]. Physical Review C, 100, 024903(2019).
[86] Shuryak E, Torres-Rincon J M. Baryon preclustering at the freeze-out of heavy-ion collisions and light-nuclei production[J]. Physical Review C, 101, 034914(2020).
[87] Shuryak E, Torres-Rincon J M. Light-nuclei production and search for the QCD critical point[J]. The European Physical Journal A, 56, 241(2020).
[88] Oliinychenko D, Shen C, Koch V. Deuteron production in AuAu collisions at sNN=7~200 GeV via pion catalysis[J]. Physical Review C, 103, 034913(2021).
[89] Wu S J, Murase K, Tang S A et al. Examination of background effects on the light-nuclei yield ratio in relativistic heavy-ion collisions[J]. Physical Review C, 106, 034905(2022).
[91] Hohenberg P C, Halperin B I. Theory of dynamic critical phenomena[J]. Reviews of Modern Physics, 49, 435-479(1977).
[92] Son D T, Stephanov M A. Dynamic universality class of the QCD critical point[J]. Physical Review D, 70, 056001(2004).
[93] Jiang L J, Wu S J, Song H C. Dynamical fluctuations in critical regime and across the 1st order phase transition[J]. Nuclear Physics A, 967, 441-444(2017).
[94] Wu S J, Wu Z M, Song H C. Universal scaling of the σ field and net-protons from Langevin dynamics of model A[J]. Physical Review C, 99, 064902(2019).
[95] Schäfer T, Skokov V. Dynamics of non-Gaussian fluctuations in model A[J]. Physical Review D, 106, 014006(2022).
[96] Mukherjee S, Venugopalan R, Yin Y. Real-time evolution of non-Gaussian cumulants in the QCD critical regime[J]. Physical Review C, 92, 034912(2015).
[97] Mukherjee S, Venugopalan R, Yin Y. Universal off-equilibrium scaling of critical cumulants in the QCD phase diagram[J]. Physical Review Letters, 117, 222301(2016).
[98] Nahrgang M, Bluhm M, Schäfer T et al. Diffusive dynamics of critical fluctuations near the QCD critical point[J]. Physical Review D, 99, 116015(2019).
[99] Herold C, Kittiratpattana A, Kobdaj C et al. Entropy production and reheating at the chiral phase transition[J]. Physics Letters B, 790, 557-562(2019).
[100] Herold C, Nahrgang M, Yan Y P et al. Net-baryon number variance and kurtosis within nonequilibrium chiral fluid dynamics[J]. Journal of Physics G: Nuclear and Particle Physics, 41, 115106(2014).
[101] Nahrgang M, Herold C, Leupold S et al. The impact of dissipation and noise on fluctuations in chiral fluid dynamics[J]. Journal of Physics G: Nuclear and Particle Physics, 40, 055108(2013).
[102] Nahrgang M, Leupold S, Bleicher M. Equilibration and relaxation times at the chiral phase transition including reheating[J]. Physics Letters B, 711, 109-116(2012).
[103] Nahrgang M, Leupold S, Herold C et al. Nonequilibrium chiral fluid dynamics including dissipation and noise[J]. Physical Review C, 84, 024912(2011).
[104] Paech K, Stöcker H, Dumitru A. Hydrodynamics near a chiral critical point[J]. Physical Review C, 68, 044907(2003).
[105] Sasaki C, Mishustin I. Phase structure of a chiral model with dilatons in hot and dense matter[J]. Physical Review C, 85, 025202(2012).
[106] Gell-Mann M, Lévy M. The axial vector current in beta decay[J]. Il Nuovo Cimento (1955–1965), 16, 705-726(1960).
[107] Scavenius O, Mócsy A, Mishustin I N et al. Chiral phase transition within effective models with constituent quarks[J]. Physical Review C, 64, 045202(2001).
[108] Stephanov M, Yin Y. Hydrodynamics with parametric slowing down and fluctuations near the critical point[J]. Physical Review D, 98, 036006(2018).
[109] Rajagopal K, Ridgway G W, Weller R et al. Understanding the out-of-equilibrium dynamics near a critical point in the QCD phase diagram[J]. Physical Review D, 102, 094025(2020).
[110] Du L P, Heinz U, Rajagopal K et al. Fluctuation dynamics near the QCD critical point[J]. Physical Review C, 102, 054911(2020).
[111] Pradeep M, Rajagopal K, Stephanov M et al. Freezing out fluctuations in hydro+ near the QCD critical point[J]. Physical Review D, 106, 036017(2022).
[112] Abbasi N, Kaminski M. Characteristic momentum of hydro+ and a bound on the enhancement of the speed of sound near the QCD critical point[J]. Physical Review D, 106, 016004(2022).
[113] An X, Başar G, Stephanov M et al. Fluctuation dynamics in a relativistic fluid with a critical point[J]. Physical Review C, 102, 034901(2020).
[114] An X. Relativistic dynamics of fluctuations and QCD critical point[J]. Nuclear Physics A, 1005, 121957(2021).
[115] Kapusta J I, Müller B, Stephanov M. Relativistic theory of hydrodynamic fluctuations with applications to heavy-ion collisions[J]. Physical Review C, 85, 054906(2012).
[116] Landau L D, Lifshitz E M. Fluid mechanics[M]. Vol.6. of Course of Theoretical Physics(2013).
[117] Lifshitz E M, Pitaevskii L P[M]. Statistical physics, 86-91(1980).
[118] Kapusta J I, Torres-Rincon J M. Thermal conductivity and chiral critical point in heavy ion collisions[J]. Physical Review C, 86, 054911(2012).
[120] Kovtun P, Moore G D, Romatschke P. Towards an effective action for relativistic dissipative hydrodynamics[J]. Journal of High Energy Physics, 2014, 123(2014).
[121] Arnold P B. Symmetric path integrals for stochastic equations with multiplicative noise[J]. Physical Review E, 61, 6099-6102(2000).
[122] Kovtun P, Moore G D, Romatschke P. Stickiness of sound: an absolute lower limit on viscosity and the breakdown of second-order relativistic hydrodynamics[J]. Physical Review D, 84, 025006(2011).
[123] Chafin C, Schäfer T. Hydrodynamic fluctuations and the minimum shear viscosity of the dilute Fermi gas at unitarity[J]. Physical Review A, 87, 023629(2013).
[124] Murase K, Hirano T. Hydrodynamic fluctuations and dissipation in an integrated dynamical model[J]. Nuclear Physics A, 956, 276-279(2016).
[125] Hirano T, Kurita R, Murase K. Hydrodynamic fluctuations of entropy in one-dimensionally expanding system[J]. Nuclear Physics A, 984, 44-67(2019).
[126] Nahrgang M, Bluhm M, Schäfer T et al. Toward the description of fluid dynamical fluctuations in heavy-ion collisions[J]. Acta Physica Polonica B Proceedings Supplement, 10, 687(2017).
[127] Bluhm M, Nahrgang M, Schäfer T et al. Fluctuating fluid dynamics for the QGP in the LHC and BES era[J]. EPJ Web of Conferences, 171, 16004(2018).
[128] Singh M, Shen C, McDonald S et al. Hydrodynamic fluctuations in relativistic heavy-ion collisions[J]. Nuclear Physics A, 982, 319-322(2019).
[129] Akamatsu Y, Mazeliauskas A, Teaney D. Kinetic regime of hydrodynamic fluctuations and long time tails for a Bjorken expansion[J]. Physical Review C, 95, 014909(2017).
[130] An X, Başar G, Stephanov M et al. Relativistic hydrodynamic fluctuations[J]. Physical Review C, 100, 024910(2019).
[131] Akamatsu Y, Mazeliauskas A, Teaney D. Bulk viscosity from hydrodynamic fluctuations with relativistic hydrokinetic theory[J]. Physical Review C, 97, 024902(2018).
[132] Akamatsu Y, Teaney D, Yan F et al. Transits of the QCD critical point[J]. Physical Review C, 100, 044901(2019).
[133] Kovtun P. Lectures on hydrodynamic fluctuations in relativistic theories[J]. Journal of Physics A: Mathematical and Theoretical, 45, 473001(2012).
[134] Martinez M, Schäfer T. Hydrodynamic tails and a fluctuation bound on the bulk viscosity[J]. Physical Review A, 96, 063607(2017).
[135] Martinez M, Schäfer T. Stochastic hydrodynamics and long time tails of an expanding conformal charged fluid[J]. Physical Review C, 99, 054902(2019).
[136] Florio A, Grossi E, Soloviev A et al. Dynamics of the O(4) critical point in QCD[J]. Physical Review D, 105, 054512(2022).
[137] Grossi E, Soloviev A, Teaney D et al. Transport and hydrodynamics in the chiral limit[J]. Physical Review D, 102, 014042(2020).
[138] Grossi E, Soloviev A, Teaney D et al. Soft pions and transport near the chiral critical point[J]. Physical Review D, 104, 034025(2021).
[139] Pratt S. Calculating n-point charge correlations in evolving systems[J]. Physical Review C, 101, 014914(2020).
[140] An X, Başar G, Stephanov M et al. Evolution of non-Gaussian hydrodynamic fluctuations[J]. Physical Review Letters, 127, 072301(2021).
[141] Berges J, Rajagopal K. Color superconductivity and chiral symmetry restoration at non-zero baryon density and temperature[J]. Nuclear Physics B, 538, 215-232(1999).
[142] Halasz M A, Jackson A D, Shrock R E et al. Phase diagram of QCD[J]. Physical Review D, 58, 096007(1998).
[143] Karsch F, Laermann E, Schmidt C. The chiral critical point in 3-flavour QCD[J]. Physics Letters B, 520, 41-49(2001).
[144] Rajagopal Krishna, Wilczek Frank. Static and dynamic critical phenomena at a second order QCD phase transition[J]. Nuclear Physics B, 399, 395-425(1993).
[146] Pradeep M S, Stephanov M. Universality of the critical point mapping between Ising model and QCD at small quark mass[J]. Physical Review D, 100, 056003(2019).
[147] Parotto P, Bluhm M, Mroczek D et al. QCD equation of state matched to lattice data and exhibiting a critical point singularity[J]. Physical Review C, 101, 034901(2020).
[148] Karthein J M, Mroczek D, Nava Acuna A R et al. Strangeness-neutral equation of state for QCD with a critical point[J]. The European Physical Journal Plus, 136, 621(2021).
[149] Mroczek D, Nava Acuna A R, Noronha-Hostler J et al. Quartic cumulant of baryon number in the presence of a QCD critical point[J]. Physical Review C, 103, 034901(2021).
[150] Kapusta J I, Welle T. Extending a scaling equation of state to QCD[J]. Physical Review C, 106, 044901(2022).
[151] Kapusta J I, Welle T, Plumberg C. Embedding a critical point in a hadron to quark-gluon crossover equation of state[J]. Physical Review C, 106, 014909(2022).
[152] Lin Z W, Ko C M, Li B A et al. Multiphase transport model for relativistic heavy ion collisions[J]. Physical Review C, 72, 064901(2005).
[153] Lin Z W, Zheng L. Further developments of a multi-phase transport model for relativistic nuclear collisions[J]. Nuclear Science and Techniques, 32, 113(2021).
[154] Bass S A. Microscopic models for ultrarelativistic heavy ion collisions[J]. Progress in Particle and Nuclear Physics, 41, 255-369(1998).
[155] Bleicher M, Zabrodin E, Spieles C et al. Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model[J]. Journal of Physics G: Nuclear and Particle Physics, 25, 1859-1896(1999).
[156] Bleicher M, Bratkovskaya E. Modelling relativistic heavy-ion collisions with dynamical transport approaches[J]. Progress in Particle and Nuclear Physics, 122, 103920(2022).
[157] Nara Y, Otuka N, Ohnishi A et al. Relativistic nuclear collisions at 10 AGeV energies from p+Be to Au+Au with the hadronic cascade model[J]. Physical Review C, 61, 024901(1999).
[158] Chen Q, Ma G L. Dynamical development of proton cumulants and correlation functions in Au+Au collisions at sNN=7.7 GeV from a multiphase transport model[J]. Physical Review C, 106, 014907(2022).
[159] Ye Y X, Wang Y J, Li Q F et al. Beam energy dependence of cumulants of the net-baryon, net-charge, and deuteron multiplicity distributions in Au+Au collisions at sNN=3.0-5.0 GeV[J]. Physical Review C, 101, 034915(2020).
[160] Zhou Y, Shi S S, Xiao K et al. Higher moments of net baryon distribution as probes of the QCD critical point[J]. Physical Review C, 82, 014905(2010).
[161] Xu J, Yu S L, Liu F et al. Cumulants of net-proton, net-kaon, and net-charge multiplicity distributions in Au + Au collisions at sNN=7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV within the UrQMD model[J]. Physical Review C, 94, 024901(2016).
[162] He S, Luo X F, Nara Y et al. Effects of nuclear potential on the cumulants of net-proton and net-baryon multiplicity distributions in Au+Au collisions at sNN=5 GeV[J]. Physics Letters B, 762, 296-300(2016).
[163] Jin X H, Chen J H, Lin Z W et al. Explore the QCD phase transition phenomena from a multiphase transport model[J]. Science China Physics, Mechanics & Astronomy, 62, 11012(2019).
[164] Xu J, Song T, Ko C M et al. Elliptic flow splitting as a probe of the QCD phase structure at finite baryon chemical potential[J]. Physical Review Letters, 112, 012301(2014).
[165] Nara Y, Niemi H, Ohnishi A et al. Examination of directed flow as a signature of the softest point of the equation of state in QCD matter[J]. Physical Review C, 94, 034906(2016).
[167] Li P C, Steinheimer J, Reichert T et al. Effects of a phase transition on two-pion interferometry in heavy ion collisions at sNN=2.4-7.7 GeV[J]. Science China Physics, Mechanics & Astronomy, 66, 232011(2023).
[168] Calzetta E, Hu B L. Stochastic dynamics of correlations in quantum field theory: from the Schwinger-Dyson to Boltzmann-Langevin equation[J]. Physical Review D, 61, 025012(1999).
[169] Gavin S, Moschelli G, Zin C. Boltzmann-Langevin approach to pre-equilibrium correlations in nuclear collisions[J]. Physical Review C, 95, 064901(2017).
[170] Sarwar G, Alam J E. Kinetic evolution and correlation of fluctuations in an expanding quark gluon plasma[J]. International Journal of Modern Physics A, 33, 1850040(2018).
[171] Stephanov M A. Evolution of fluctuations near QCD critical point[J]. Physical Review D, 81, 054012(2010).
[172] Pisarski R D, Wilczek F. Remarks on the chiral phase transition in chromodynamics[J]. Physical Review D, 29, 338-341(1984).
[173] Wilczek F. Application of the renormalization group to a second-order QCD phase transition[J]. International Journal of Modern Physics A, 7, 3911-3925(1992).
[174] Fraga E S, Palhares L F, Sorensen P. Finite-size scaling as a tool in the search for the QCD critical point in heavy ion data[J]. Physical Review C, 84, 011903(2011).
[175] Palhares L F, Fraga E S, Kodama T. Chiral transition in a finite system and possible use of finite-size scaling in relativistic heavy ion collisions[J]. Journal of Physics G: Nuclear and Particle Physics, 38, 085101(2011).
[176] Francuz A, Dziarmaga J, Gardas B et al. Space and time renormalization in phase transition dynamics[J]. Physical Review B, 93, 075134(2016).
[177] Nikoghosyan G, Nigmatullin R, Plenio M B. Universality in the dynamics of second-order phase transitions[J]. Physical Review Letters, 116, 080601(2016).
[178] Gibbs J W[M]. The collected works of J Willard Gibbs, 1, 105-115, 252(1928).
[179] Becker R, Döring W. Kinetische behandlung der keimbildung in übersättigten dämpfen[J]. Annalen Der Physik, 416, 719-752(1935).
[180] Lothe J, Pound G M. Reconsiderations of nucleation theory[J]. The Journal of Chemical Physics, 36, 2080-2085(1962).
[181] Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. interfacial free energy[J]. The Journal of Chemical Physics, 28, 258-267(1958).
[182] Langer J S. Theory of the condensation point[J]. Annals of Physics, 281, 941-990(2000).
[183] Langer J S. Statistical theory of the decay of metastable states[J]. Annals of Physics, 54, 258-275(1969).
[184] Zeng X C, Oxtoby D W. Gas-liquid nucleation in lennard-Jones fluids[J]. The Journal of Chemical Physics, 94, 4472-4478(1991).
[185] Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. interfacial free energy[J]. The Journal of Chemical Physics, 28, 258-267(1958).
[186] Alamoudi S, Barci D G, Boyanovsky D et al. Dynamical viscosity of nucleating bubbles[J]. Physical Review D, 60, 125003(1999).
[187] Bessa A, Fraga E S, Mintz B W. Phase conversion in a weakly first-order quark-hadron transition[J]. Physical Review D, 79, 034012(2009).
[188] Csernai L P, Kapusta J I. Dynamics of the QCD phase transition[J]. Physical Review Letters, 69, 737-740(1992).
[189] Csernai L P, Kapusta J I. Nucleation of relativistic first-order phase transitions[J]. Physical Review D, 46, 1379-1390(1992).
[190] Csernai L P, Kapusta J I, Kluge G et al. Phase transition dynamics in ultra-relativistic heavy ion collisions[J]. Zeitschrift Für Physik C Particles and Fields, 58, 453-459(1993).
[191] Mishustin I N. Nonequilibrium phase transition in rapidly expanding matter[J]. Physical Review Letters, 82, 4779-4782(1999).
[192] Shukla P, Mohanty A K. Nucleation versus spinodal decomposition in a first order quark hadron phase transition[J]. Physical Review C, 64, 054910(2001).
[193] Shukla P, Mohanty A K, Gupta S K et al. Inhomogeneous nucleation in a quark-hadron phase transition[J]. Physical Review C, 62, 054904(2000).
[194] Zabrodin E E, Bravina L V, Csernai L P et al. Supercooling of rapidly expanding quark-gluon plasma[J]. Physics Letters B, 423, 373-378(1998).
[195] Randrup J. Phase transition dynamics for baryon-dense matter[J]. Physical Review C, 79, 054911(2009).
[196] Randrup J. Spinodal phase separation in relativistic nuclear collisions[J]. Physical Review C, 82, 034902(2010).
[197] Steinheimer J, Randrup J. Spinodal amplification of density fluctuations in fluid-dynamical simulations of relativistic nuclear collisions[J]. Physical Review Letters, 109, 212301(2012).
[198] Steinheimer J, Randrup J. Spinodal density enhancements in simulations of relativistic nuclear collisions[J]. Physical Review C, 87, 054903(2013).
[199] Steinheimer J, Randrup J, Koch V. Non-equilibrium phase transition in relativistic nuclear collisions: importance of the equation of state[J]. Physical Review C, 89, 034901(2014).
[200] Pratt S. Consistent implementation of non-zero-range terms into hydrodynamics[J]. Physical Review C, 96, 044903(2017).
[201] Skokov V V, Voskresensky D N. Hydrodynamical description of first-order phase transitions: analytical treatment and numerical modeling[J]. Nuclear Physics A, 828, 401-438(2009).
[202] Shen C, Schenke B. Dynamical initial-state model for relativistic heavy-ion collisions[J]. Physical Review C, 97, 024907(2018).
[203] Du L P, Heinz U, Vujanovic G. Hybrid model with dynamical sources for heavy-ion collisions at BES energies[J]. Nuclear Physics A, 982, 407-410(2019).
[205] Song H C, Zhou Y, Gajdošová K. Collective flow and hydrodynamics in large and small systems at the LHC[J]. Nuclear Science and Techniques, 28, 99(2017).
[206] Shen C, Yan L. Recent development of hydrodynamic modeling in heavy-ion collisions[J]. Nuclear Science and Techniques, 31, 122(2020).
[207] Lan S W, Shi S S. Anisotropic flow in high baryon density region[J]. Nuclear Science and Techniques, 33, 21(2022).
[208] Hattori K, Huang X G. Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions[J]. Nuclear Science and Techniques, 28, 26(2017).
[209] Wang F Q, Zhao J. Search for the chiral magnetic effect in heavy ion collisions[J]. Nuclear Science and Techniques, 29, 179(2018).
[210] Liu Y C, Huang X G. Anomalous chiral transports and spin polarization in heavy-ion collisions[J]. Nuclear Science and Techniques, 31, 56(2020).
[211] Gao J H, Ma G L, Pu S et al. Recent developments in chiral and spin polarization effects in heavy-ion collisions[J]. Nuclear Science and Techniques, 31, 90(2020).
[212] Gao L L, Huang X G. Chiral anomaly in non-relativistic systems: berry curvature and chiral kinetic theory[J]. Chinese Physics Letters, 39, 021101(2022).
[213] Peng H H, Zhang J J, Sheng X L et al. Ideal spin hydrodynamics from the Wigner function approach[J]. Chinese Physics Letters, 38, 116701(2021).
[214] Fang R H, Dong R D, Hou D F et al. Thermodynamics of the system of massive Dirac fermions in a uniform magnetic field[J]. Chinese Physics Letters, 38, 091201(2021).
[215] Tang Z B, Zha W M, Zhang Y F. An experimental review of open heavy flavor and quarkonium production at RHIC[J]. Nuclear Science and Techniques, 31, 81(2020).
[216] Wang H, Chen J H. Study on open charm hadron production and angular correlation in high-energy nuclear collisions[J]. Nuclear Science and Techniques, 32, 2(2021).
[217] Wang X N. Vector meson spin alignment by the strong force field[J]. Nuclear Science and Techniques, 34, 15(2023).
[218] Ma Y G. New type of double-slit interference experiment at Fermi scale[J]. Nuclear Science and Techniques, 34, 16(2023).
Get Citation
Copy Citation Text
Shanjin WU, Huichao SONG. Critical dynamical fluctuations near the QCD critical point[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040004
Category: Research Articles
Received: Dec. 27, 2022
Accepted: --
Published Online: Apr. 27, 2023
The Author Email: SONG Huichao (huichaosong@pku.edu.cn)