Acta Photonica Sinica, Volume. 51, Issue 10, 1016001(2022)
Research Progress of Biosensors Based on Nano-zinc Oxide(Invited)
[1] LIU Tao, ZHANG Wenjun, ZHANG Guofeng et al. Application of nanotechnology in traditional Chinese medicine[J]. Pharmaceutical Research, 41, 187-201(2022).
[2] HAN Xueqing, YANG Zexiao, LIN Xiangmei. A promising biological detection technology—biosensor[J]. China Biotechnology, 28, 141-147(2008).
[3] WANG Lijiang, CHEN Songyue, LIU Qingjun et al. Application of nanotechnology in biosensors and detection[J]. Journal of Sensing Technology, 19, 581-587(2006).
[4] MAO Weiwei. Preparation of metal oxide nanostructures and research on electrochemical glucose sensing[D], 16-25(2019).
[5] ANDREJ D, MARIJA K. Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution[J]. Journal of the European Ceramic Society, 20, 667-673(2000).
[6] NEWMAN M D, STOTLAND M, ELLIS J I. The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens[J]. Journal of the American Academy of Dermatology, 61, 685-692(2009).
[7] HATAMIE A, KHAN A, GOLABI M et al. Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material[J]. Langmuir, 31, 10913-10921(2015).
[8] BARMAN B, SWAMI S K, DUTTA V. Fabrication of highly conducting ZnO/Ag/ZnO and AZO/Ag/AZO transparent conducting oxide layers using RF magnetron sputtering at room temperature[J]. Materials Science in Semiconductor Processing, 129, 105801(2021).
[9] YIN Fengli, ZHI Minliu, YAN Liliu et al. A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles[J]. Analytical Biochemistry, 349, 33-40(2006).
[10] CHEN Xi, LIU Dali. Temperature stability of ZnO-based love wave biosensor with SiO2 buffer layer[J]. Sensors and Actuators A: Physical, 156, 317-322(2009).
[11] ZHAO M, HUANG J, ZHOU Y et al. Controlled synthesis of spinel ZnFe2O4 decorated ZnO heterostructures as peroxidase mimetics for enhanced colorimetric biosensing[J]. Chemical Communications, 49, 7656-7658(2013).
[12] BAGYALAKSHMI S, SIVAKAMI A, BALAMURUGAN K S. A Zno nanorods based enzymatic glucose biosensor by immobilization of glucose oxidase on a chitosan film[J]. Obesity Medicine, 18, 100229(2020).
[13] EVENESS J, CAO L, KIELY J et al. Equivalent circuit model of a non-faradaic impedimetric ZnO nano-crystal biosensor[J]. Journal of Electroanalytical Chemistry, 906, 116003(2022).
[14] KIRAN G, KRISHNA R, DWIVEDI P et al. Analytical modeling of MgZnO/ZnO MOSHEMT based biosensor for biomolecule detection[J]. Micro and Nanostructures, 163, 107130(2022).
[15] SHARIATI M, SADEGHI M, REZA SHOJAEI S H. Sensory analysis of hepatitis B virus DNA for medicinal clinical diagnostics based on molybdenum doped ZnO nanowires field effect transistor biosensor:a comparative study to PCR test results[J]. Analytica Chimica Acta, 1195, 339442(2022).
[16] BARIK S, SRIVASTAVA AK, MISRA P et al. Alumina capped ZnO quantum dots multilayer grown by pulsed laser deposition[J]. Solid State Communications, 127, 463-467(2003).
[17] WANG Z L. Nanostructures of zinc oxide[J]. Materials Today, 7, 26-33(2004).
[18] VAYSSIERES L, KEIS K, HAGFELDT A et al. Three-dimensional array of highly oriented crystalline ZnO microtubes[J]. Chemistry of Materials, 13, 4395-4395(2001).
[19] VAYSSIERES L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J]. Advanced Materials, 15, 464-466(2003).
[20] GREENE L E, LAW M, GOLDBERGER J et al. Low-temperature wafer-scale production of ZnO nanowire arrays[J]. Angewandte Chemie-International Edition, 42, 3031-3034(2003).
[21] TAK M, GUPTA V, TOMAR M. Flower-like ZnO nanostructure based electrochemical DNA biosensor for bacterial meningitis detection[J]. Biosensors & Bioelectronics, 59, 200-207(2014).
[22] LI Lin, WANG Xuewen, ZHANG Zhiyong et al. Preparation of ZnO nanorods by water bath method and their field emission properties[J]. Acta Photonica Sinica, 38, 2525-2529(2009).
[23] YAN Junfeng, YOU Guitian, ZHANG Zhiyong et al. Effect of Sb-doping on the morphology and dielectric properties of chrysanthemum-like ZnO nanowire clusters[J]. Chinese Physics B, 21, 098001(2012).
[24] ZHANG Z, XU M, LIU L et al. Novel SnO2@ZnO hierarchical nanostructures for highly sensitive and selective NO2 gas sensing[J]. Sensors and Actuators B, 257, 714-727(2018).
[25] ZHANG Shilong, LI Zhendong, XU Ruicheng et al. Research progress on the preparation of nanowires by hydrothermal method[J]. Journal of Synthetic Crystals, 48, 461-469(2019).
[26] SEKIGUCHI T, MIYASHITA S, OBARA K et al. Hydrothermal growth of ZnO single crystals and their optical characterization[J]. Journal of Crystal Growth, 214/215, 72-76(2000).
[27] KHAN R, UTHIRAKUMAR P, BAE K B et al. Localized surface plasmon enhanced photoluminescence of ZnO nanosheets by Au nanoparticles[J]. Materials Letters, 163, 8-11(2016).
[28] WANG W W, DIAO X G, WANG Z et al. Preparation and characterization of high-performance direct current magnetron sputtered ZnO: Al films[J]. Thin Solid Films, 491, 54-60(2005).
[29] CHOOPUN S, HONGSITH N, MANGKORNTONG P et al. Zinc oxide nanobelts by RF sputtering for ethanol sensor[J]. Physica E, 39, 53-56(2007).
[30] GHORANNEVIS Z, HOSSEINNEJAD M T, HABIBI M et al. Effect of substrate temperature on structural, morphological and optical properties of deposited Al/ZnO films[J]. Journal of Theoretical and Applied Physics, 9, 33-38(2015).
[31] SIVASAKTHI P, AMIR H, SORNAMBIKAI S et al. Substrate temperature induced enhanced selectivity and sensitivity for nanomolar gallic acid detection on RF magnetron sputtered ZnO/GS thin film electrode[J]. Sensors and Actuators A, 315, 112368(2020).
[32] CORREA M A, FERREIRA A, TROMER R M et al. Improving the room-temperature ferromagnetism in ZnO and low-doped ZnO:Ag films Using GLAD Sputtering[J]. Materials, 14, 5337(2021).
[33] LEE S, JOUNG Y H, YOON Y K et al. Preparation of a ZnO nanostructure as the anode material using RF magnetron sputtering system[J]. Nanomaterials, 12, 215-219(2022).
[34] CHEN C, HE G, ZHANG Z Y et al. Growth mechanism of novel scaly CNFs@ZnO nanofibers structure and its photoluminescence property[J]. Applied Surface Science, 491, 75-82(2019).
[35] CHEN C, HAUFFMAN T, ZHANG Z Y et al. Exploration and mechanism analysis: the maximum ultraviolet luminescence limits of ZnO/few-layer graphene composite films[J]. Applied Surface Science, 503, 144169(2020).
[36] SPANHEL L, ANDERSON M A. Semiconductor clusters in the sol-gel process-quantized aggregation, gelation, and crystal-growth in concentrated ZnO colloids[J]. Journal of the American Chemical Society, 113, 2826-2833(1991).
[37] HOSSAIN M K, GHOSH S C, BOOTONGKANG Y et al. Growth of zinc oxide nanowires and nanobelts for gas sensing[J]. Journal of Metastable and Nanocrystalline Materials, 23, 27-30(2005).
[38] RANI S, SURI P, SHISHODIA P et al. Synthesis of nanocrystalline ZnO powder via sol-gel route for dye-sensitized solar cells[J]. Solar Energy Materials and Solar Cells, 92, 1639-1645(2008).
[39] ZAK A K, YOUSEFI R, MAJID W H et al. Facile synthesis and X-Ray peak broadening studies of Zn1-xMgxO nanoparticles[J]. Ceramics International, 38, 2059-2064(2012).
[40] JI Hongfen, ZHANG Zhiyong, CHONG Lanxiang et al. Experimental study on the preparation of Co-doped ZnO nanopowders by sol-gel method[J]. Functional Materials, 38, 1018-1021(2009).
[41] WANG Feng, ZHANG Zhiyong, YAN Junfeng et al. Preparation and properties of ZnO-SnO2 transparent conductive thin films[J]. Chinese Journal of Photonics, 38, 3121-3125(2009).
[42] YAN Junfeng, ZHANG Zhiyong, YOU Tiangui et al. Preparation and electromagnetic properties of Nano-ZnO powder[J]. Journal of Northwestern University (Natural Science Edition), 40, 787-792(2010).
[43] LIU Jin, LV Yuanyuan, ZHANG Zhiyong et al. ZnO/graphene films prepared by sol-gel method and the effect of annealing temperature on their photoluminescence (English)[J]. Rare Metal Materials and Engineering, 46, 888-892(2017).
[44] JING Jipeng, LIN Lihua, YANG Kaiyu et al. Highly efficient inverted quantum dot light-emitting diodes employing sol-gel derived Li-doped ZnO as electron transport layer[J]. Organic Electronics, 103, 106466(2022).
[45] ZHENG Jiaxin, LUO Yinqi, WEN Xinbo et al. Induced crystallization of sol-gel-derived zinc oxide for efficient non-fullerene polymer solar cells[J]. Journal of Materials Chemistry A, 9, 9616-9623(2021).
[46] YAMAMOTO Y, SAITO K, TAKAHASHI K et al. Preparation of boron-doped ZnO thin films by photo-atomic layer deposition[J]. Solar Energy Materials and Solar Cells, 65, 125-132(2001).
[47] LIM J, LEE C. Effects of substrate temperature on the microstructure and photoluminescence properties of ZnO thin films prepared by atomic layer deposition[J]. Thin Solid Films, 515, 3335-3338(2007).
[48] GUZIEWICZ E, KOWALIK IA, GODLEWSKI M et al. Extremely low temperature growth of ZnO by atomic layer deposition[J]. Journal of Applied Physics, 103, 033515(2008).
[49] FANG L, LI H, MA X et al. Optical properties of ultrathin ZnO films fabricated by atomic layer deposition[J]. Applied Surface Science, 527, 146818(2020).
[50] HAGA H, JINNAI M, OGAWA S et al. Rapid fabrication of ZnO film by electrochemical deposition method from aqueous solution[J]. Electrical Engineering in Japan, 214, 357-363(2021).
[51] KUMAR S, SAHARE P D, KUMAR S. Optimization of the CVD parameters for ZnO nanorods growth: Its photoluminescence and field emission properties[J]. Materials Research Bulletin, 105, 237-245(2018).
[52] NARIN P, KUTLU-NARIN E, LISESIVDIN S B. Growth dynamics of mist-CVD grown ZnO nanoplatelets[J]. Physica B-Condensed Matter, 614, 413028(2021).
[53] SHI F, XU J, HU Z et al. Bird nest-like zinc oxide nanostructures for sensitive electrochemical glucose biosensor[J]. Chinese Chemical Letters, 32, 3185-3188(2021).
[54] CHAKRABORTY B, SAHA R, CHATTOPADHYAY S et al. Impact of surface defects in electron beam evaporated ZnO thin films on FET biosensing characteristics towards reliable PSA detection[J]. Applied Surface Science, 537, 147895(2021).
[55] DZYADEVYCH S V, ARKHYPOVA V N, SOLDATKIN A P et al. Amperometric enzyme biosensors: past, present and future[J]. ITBM-RBM, 29, 171-180(2008).
[56] ZHU Qiangyun, LI Lun, CHEN Xuelan. Development and application of biosensors[J]. Health Research, 48, 512-516(2019).
[57] MONOŠÍK R, STREĎANSKÝ M, ŠTURDÍK E. Biosensors-classification, characterization and new trends[J]. Acta Chimica Slovaca, 5, 109-120(2012).
[58] TAK M, GUPTA V, TOMAR M. An electrochemical DNA biosensor based on Ni doped ZnO thin film for meningitis detection[J]. Journal of Electroanalytical Chemistry, 792, 8-14(2017).
[59] LIU Y L, YANG Y H, YANG H F et al. Nanosized flower-like ZnO synthesized by a simple hydrothermal method and applied as matrix for horseradish peroxidase immobilization for electro-biosensing[J]. Journal of Inorganic Biochemistry, 99, 2046-2053(2005).
[60] NAGAL V, KUMAR V, KHAN M et al. A highly sensitive uric acid biosensor based on vertically arranged ZnO nanorods on a ZnO nanoparticle-seeded electrode[J]. New Journal of Chemistry, 45, 18863-18870(2021).
[61] ERYIGIT M, URHAN BK, DOGAN HO et al. ZnO nanosheets-decorated ERGO layers: an efficient electrochemical sensor for non-enzymatic uric acid detection[J]. IEEE Sensors Journal, 22, 5555-5561(2022).
[62] VERMA S, ARYA P, SINGH A et al. ZnO-rGO nanocomposite based bioelectrode for sensitive and ultrafast detection of dopamine in human serum[J]. Biosensors & Bioelectronics, 165, 112347(2020).
[63] RASHED M A, FAISAL M, HARRAZ F A et al. A highly efficient nonenzymatic hydrogen peroxide electrochemical sensor using mesoporous carbon doped ZnO nanocomposite[J]. Journal of the Electrochemical Society, 168, 027512(2021).
[64] WANG J, ZHAO J, YANG J et al. An electrochemical sensor based on MOF-derived NiO@ZnO hollow microspheres for isoniazid determination[J]. Microchimica Acta, 187, 380-388(2020).
[65] DAIZY M, ALI M R, BACCHU M S et al. ZnO hollow spheres arrayed molecularly-printed-polymer based selective electrochemical sensor for methyl-parathion pesticide detection[J]. Environmental Technology & Innovation, 24, 101847(2021).
[66] FALLATAH A, KUPERUS N, ALMOMTAN M et al. Sensitive biosensor based on shape-controlled ZnO nanostructures grown on flexible porous substrate for pesticide detection[J]. Sensors, 22, 3522-3529(2022).
[67] GUNAVATHANA S D, GIRIJA S, WILSON J et al. ZnO nanorods bonded polythiophene nanocomposite: an enhanced electrochemical voltammetric biosensing of L-tryptophan[J]. Bulletin of Materials Science, 45, 57(2022).
[68] MYNDRUL V, COY E, BABAYEVSKA N et al. MXene nanoflakes decorating ZnO tetrapods for enhanced performance of skin-attachable stretchable enzymatic electrochemical glucose sensor[J]. Biosensors & Bioelectronics, 207, 114141(2022).
[69] GUO Shouyue, SHAN Shijun, DENG Lingfu. The principle of SPR prism sensor to measure the refractive index of liquid[J]. Physical Experiments, 11, 39-42(2006).
[70] KIM H M, PARK J H, LEE S K. Fiber optic sensor based on ZnO nanowires decorated by Au nanoparticles for improved plasmonic biosensor[J]. Scientific Reports, 9, 15605(2019).
[71] PAL S, PRAJAPATI Y K, SAINI J P. Influence of graphene's chemical potential on SPR biosensor using ZnO for DNA hybridization[J]. Optical Review, 27, 57-64(2020).
[72] WANG Y, ZHANG M, MA H et al. Surface plasmon resonance from Gallium-Doped Zinc Oxide nanoparticles and their electromagnetic enhancement contribution to surface-enhanced raman scattering[J]. Acs Applied Materials & Interfaces, 13, 35038-35045(2021).
[73] MUDGAL N, SAHARIA A, AGARWAL A et al. ZnO and bi-metallic (Ag-Au) layers based surface plasmon resonance (SPR) biosensor with BaTiO3 and graphene for biosensing applications[J]. IETE Journal of Research, 12, 1844074(2020).
[74] CHEN S, HU S, WU Y et al. Ultrasensitive biosensor with hyperbolic metamaterials composed of silver and Zinc Oxide[J]. Nanomaterials, 11, 2220(2021).
[75] YADAV A, KUMAR A, SHARAN P. Sensitivity enhancement of a plasmonic biosensor for urine glucose detection by employing black phosphorous[J]. Journal of the Optical Society of America B-Optical Physics, 39, 200-206(2022).
[76] YANG H, ZHAO X, ZHANG Z et al. Biotin-streptavidin sandwich integrated PDA-ZnO@Au nanocomposite based SPR sensor for hIgG detection[J]. Talanta, 246, 123496(2022).
[77] HAO Bojuan, WANG Kaige, ZHOU Yukun et al. Label-free detecting the compaction and decompaction of ctDNA molecules induced by surfactants with SERS based on nanoPAA-ZnCl2-AuLs solid substrate[J]. ACS Omega, 52, 1109-1119(2020).
[78] SUI Chaofan, WANG Kaige, WANG Shuang et al. SERS activity with tenfold detection limit optimization on a type of nanoporous AAO-based complex multilayer substrate[J]. Nanoscale, 8, 5920-5927(2016).
[79] ZHANG Ruihong, ZHU Jie, SUN Dan et al. The mechanism of dynamic interaction between doxorubicin and calf thymus DNA at the single-molecule level based on Confocal Raman spectroscopy[J]. Micromachines, 13, 940(2022).
[80] ZHOU Yukun, DANG Yang, WANG Kaige et al. A stable nanoPAA-ZnO/ZnCl2 composite with variable 3D structured morphology and sustained superhydrophilicity[J]. Langmuir, 37, 5457-5463(2021).
[81] LIU Chunyan, XU Xiaohui, WANG Changding et al. ZnO/Ag nanorods as a prominent SERS substrate contributed by synergistic charge transfer effect for simultaneous detection of oral antidiabetic drugs pioglitazone and phenformin[J]. Sensors & Actuators: B: Chemical, 307, 127634(2020).
[82] SUN Q, ZHANG Q Y, ZHOU N et al. Silver-coated flower-like ZnO nanorod arrays: ultrastable SERS substrates and the mechanisms of optical stability[J]. Applied Surface Science, 526, 146565(2020).
[83] AMOUZADEH T M, FERRE-BORRULL J, MARSAL L F et al. Highly sensitive IRS based biosensor for the determination of cytochrome c as a cancer marker by using nanoporous anodic alumina modified with trypsin[J]. Biosensors and Bioelectronics, 149, 111828(2020).
[84] LI J P H, KENNEDY E M, ADESINA A A et al. Mechanistic insights into the Knoevenagel condensation reaction over ZnO catalysts: direct observation of surface intermediates using in situ FTIR[J]. Journal of Catalysis, 369, 157-167(2019).
[85] BERGVELD P. Development of an ion-sensitive solid-state device for neurophysiological measurements[J]. IEEE Transactions on Bio-medical Engineering, 17, 70-71(1970).
[86] AHMAD R, MAHMOUDI T, AHN M S et al. Recent advances in nanowires-based field-effect transistors for biological sensor applications.[J]. Biosensors & Bioelectronics, 100, 312-325(2018).
[87] DU X, LI Y, MOTLEY JR et al. Glucose sensing using functionalized amorphous In-Ga-Zn-O field-effect transistors[J]. Acs Applied Materials & Interfaces, 8, 7631-7637(2016).
[88] BHAT K S, AHMAD R, MAHMOUDI T et al. High performance chemical sensor with field-effect transistors array for selective detection of multiple ions[J]. Chemical Engineering Journal, 417, 128064(2021).
[89] OGURCOVS A, KADIWALA K, SLEDEVSKIS E et al. Effect of DNA aptamer concentration on the conductivity of a water-gated Al:ZnO thin-film transistor-based biosensor[J]. Sensors, 22, 3408(2022).
[90] ZHANG Q, MAJUMDAR H S, KAISTI M et al. Surface functionalization of ion-sensitive floating-gate field-effect transistors with organic electronics[J]. IEEE Transactions on Electron Devices, 62, 1291-1298(2015).
[91] YU J, GAO G, SUN B et al. Optimization of sensing-pad functionalizing strategy toward separative extended-gate FET biosensors for PSA detection[J]. Journal of Pharmaceutical and Biomedical Analysis, 211, 114597(2022).
[92] ZHANG K M, ZHAO Y P, HE F Q et al. Piezoelectricity of ZnO films prepared by sol-gel method[J]. Chinese Journal of Chemical Physics, 20, 721-726(2007).
[93] ZHANG X, VILLAFUERTE J, CONSONNI V et al. Optimization strategies used for boosting piezoelectric response of biosensor based on flexible micro-ZnO composites[J]. Biosensors-Basel, 12, 245(2022).
[94] WANG M, ZI G, LIU J et al. Self-powered biosensor for specifically detecting creatinine in real time based on the piezo-enzymatic-reaction effect of enzyme-modified ZnO nanowires[J]. Biosensors-Basel, 11, 342(2021).
[95] NING Z, LONG Z, YANG G et al. Self-powered wearable biosensor in a baby diaper for monitoring neonatal jaundice through a hydrovoltaic-biosensing coupling effect of ZnO nanoarray[J]. Biosensors-Basel, 12, 164(2022).
[96] GEDDA G, WU Huifen. Fabrication of surface modified ZnO nanorod array for MALDI-MS analysis of bacteria in a nanoliter droplet: a multiple function biochip[J]. Sensors and Actuators B: Chemical, 288, 667-677(2019).
[97] ZHANG Liqun, LIANG Wenbin, RAN Qiaosheng et al. Ultrasensitive detection of NDM-1 resistant bacteria based on signal amplification with sandwich-type LNA electrochemical biochips[J]. Sensors and Actuators B: Chemical, 306, 127556(2020).
Get Citation
Copy Citation Text
Xuewen WANG, Zhengyan XU, Kaige WANG, Zhiyong ZHANG, Wu ZHAO. Research Progress of Biosensors Based on Nano-zinc Oxide(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1016001
Category:
Received: Jul. 19, 2022
Accepted: Sep. 20, 2022
Published Online: Nov. 30, 2022
The Author Email: Xuewen WANG (wangxuew@nwu.edu.cn), Kaige WANG (wangkg@nwu.edu.cn)