Laser & Optoelectronics Progress, Volume. 62, Issue 14, 1439001(2025)

Part-Guided Unsupervised Point Cloud Shape Classification

Haoyang Li1,2,3, Xie Han1,2,3、*, and Tingya Liang1,2,3
Author Affiliations
  • 1School of Computer Science and Technology, North University of China, Taiyuan 030051, Shanxi , China
  • 2Shanxi Provincial Key Laboratory of Machine Vision and Virtual Reality, Taiyuan 030051, Shanxi , China
  • 3Shanxi Province's Vision Information Processing and Intelligent Robot Engineering Research Center, Taiyuan 030051, Shanxi , China
  • show less
    Figures & Tables(11)
    Rc-Part network architecture
    Process of unsupervised representation learning
    Contrastive learning module
    Generative learning module
    Dynamic changes of the training model on the Part 2048 dataset. (a) Random initialization; (b) 10 epochs; (c) 100 epochs;
    • Table 1. Loss function weight and model accuracy

      View table

      Table 1. Loss function weight and model accuracy

      ModelBackboneContrastive loss /%Reconstruction loss /%Accuracy /%
      Rc-Part (Part 2048)PointNet208088.4
      505089.1
      802090.2
    • Table 2. Classfication accuracy on the ModelNet10 and ModelNet40 datasets

      View table

      Table 2. Classfication accuracy on the ModelNet10 and ModelNet40 datasets

      MethodWhether to use labelsBackboneAccuracy /%
      ModelNet10ModelNet40
      PointNet4YesPointNet89.2
      Jigsaw3D(ModelNet)10NoPointNet91.387.5
      Jigsaw3D(ShapeNet)10NoPointNet91.687.3
      Rotation3D(ShapeNet)22NoPointNet88.6
      OcCo(ModelNet)23NoPointNet91.488.7
      STRL(ShapeNet)24NoPointNet88.3
      Multi-view rendering(ModelNet)25NoPointNet89.5
      ConClu(ModelNet)18NoPointNet93.289.6
      SoftClu(ShapeNet)17NoPointNet93.088.4
      CrossPoint (ShapeNet)26NoPointNet89.1
      CLR-GAM (ShapeNet)12NoPointNet88.9
      Rc-Part (ModelNet)NoPointNet92.189.5
      Rc-Part (ShapeNet)NoPointNet93.889.8
      Rc-Part (Part 2048)NoPointNet94.090.2
    • Table 3. Classfication accuracy on the ScanObjectNN dataset

      View table

      Table 3. Classfication accuracy on the ScanObjectNN dataset

      MethodWhether to use labelsBackboneAccuracy /%
      Jigsaw3D10NoPointNet49.7
      OcCo23NoPointNet62.1
      Multi-view rendering25NoPointNet70.2
      Rc-Part (Part 2048)NoPointNet71.4
      Rc-Part (ShapeNet)NoPointNet74.0
      Rc-Part (ModelNet)NoPointNet70.3
    • Table 4. Accuracy of the Rc-Part network on the ModelNet40 dataset

      View table

      Table 4. Accuracy of the Rc-Part network on the ModelNet40 dataset

      ModelBackboneDecoderAccuracy /%
      Rc-Part (Part 2048)PointNetFoldingNet90.2
      FC88.2
    • Table 5. Ablation experiment results on the ModelNet40 dataset

      View table

      Table 5. Ablation experiment results on the ModelNet40 dataset

      ModelBackboneContrastive learningReconstructionAccuracy /%
      Rc-Part (Part 2048)PointNet87.2
      83.4
      90.2
    • Table 6. Accuracy of different networks on the ModelNet10 and ModelNet40 datasets

      View table

      Table 6. Accuracy of different networks on the ModelNet10 and ModelNet40 datasets

      MethodWhether to use labelsBackboneAccuracy /%
      ModelNet10ModelNet40
      PointNet++5YesPointNet++90.7
      Jigsaw3D10NoDGCNN94.590.6
      OcCo23NoDGCNN92.790.2
      STRL24NoDGCNN90.0
      ConClu18NoDGCNN94.991.8
      SoftClu17NoDGCNN94.591.4
      CrossPoint26NoDGCNN91.2
      CLR-GAM12NoDGCNN91.3
      Rc-Part (ShapeNet)NoDGCNN94.891.9
      Rc-Part (ModelNet)NoPointNet++95.192.1
    Tools

    Get Citation

    Copy Citation Text

    Haoyang Li, Xie Han, Tingya Liang. Part-Guided Unsupervised Point Cloud Shape Classification[J]. Laser & Optoelectronics Progress, 2025, 62(14): 1439001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: AI for Optics

    Received: Dec. 31, 2024

    Accepted: Feb. 19, 2025

    Published Online: Jul. 4, 2025

    The Author Email: Xie Han (hanxie@nuc.edu.cn)

    DOI:10.3788/LOP242534

    CSTR:32186.14.LOP242534

    Topics