Optics and Precision Engineering, Volume. 30, Issue 20, 2489(2022)

Multi-scale dense feature fusion network for image super-resolution

Deqiang CHENG1, Jiamin ZHAO1, Qiqi KOU2、*, Liangliang CHEN1, and Chenggong HAN1
Author Affiliations
  • 1School of Information and Control Engineering, China University of Mining and Technology, Xuzhou226, China
  • 2School of Computer Science and Technology, China University of Mining and Technology, Xuzhou1116, China
  • show less
    References(27)

    [1] [1] 1朱福珍, 刘越, 黄鑫, 等. 改进的稀疏表示遥感图像超分辨重建[J]. 光学 精密工程, 2019, 27(3): 718-725. doi: 10.13482/j.issn1001-7011.2019.05.004ZHUF Z, LIUY, HUANGX, et al. Remote sensing image super-resolution based on improved sparse representation[J]. Opt. Precision Eng., 2019, 27(3): 718-725.(in Chinese). doi: 10.13482/j.issn1001-7011.2019.05.004

    [2] GUO K H, GUO H F, REN S et al. Towards efficient motion-blurred public security video super-resolution based on back-projection networks[J]. Journal of Network and Computer Applications, 166, 102691(2020).

    [3] [3] 3刘雪岩, 许聿达, 雷建昕, 等. 基于视差放大与超分辨率的三维光场腹腔镜标定[J]. 光学 精密工程, 2022, 30(5): 510-517. doi: 10.37188/OPE.2021.0332LIUX Y, XUY D, LEIJ X, et al. Three-dimensional light field endoscope calibration based on light field disparity amplifier and super-resolution network[J]. Opt. Precision Eng., 2022, 30(5): 510-517.(in Chinese). doi: 10.37188/OPE.2021.0332

    [4] LU W, TAN Y P. Color filter array demosaicking: new method and performance measures[J]. IEEE Transactions on Image Processing, 12, 1194-1210(2003).

    [5] IRANI M, PELEG S. Improving resolution by image registration[J]. CVGIP: Graphical Models and Image Processing, 53, 231-239(1991).

    [6] [6] 6蔡体健, 彭潇雨, 石亚鹏, 等. 通道注意力与残差级联的图像超分辨率重建[J]. 光学 精密工程, 2021, 29(1): 142-151. doi: 10.37188/OPE.20212901.0142CAIT J, PENGX Y, SHIY P, et al. Channel attention and residual concatenation network for image super-resolution[J]. Opt. Precision Eng., 2021, 29(1): 142-151.(in Chinese). doi: 10.37188/OPE.20212901.0142

    [7] [7] 7董本志, 于明聪, 赵鹏. 基于小波域的图像超分辨率重建方法[J]. 液晶与显示, 2021, 36(2): 317-326. doi: 10.37188/CJLCD.2020-0101DONGB Z, YUM C, ZHAOP. Image super-resolution reconstruction based on wavelet domain[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(2): 317-326.(in Chinese). doi: 10.37188/CJLCD.2020-0101

    [8] [8] 8陈宗航, 胡海龙, 姚剑敏, 等. 基于改进生成对抗网络的单帧图像超分辨率重建[J]. 液晶与显示, 2021, 36(5): 705-712. doi: 10.37188/CJLCD.2020-0250CHENZ H, HUH L, YAOJ M, et al. Single frame image super-resolution reconstruction based on improved generative adversarial network[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(5): 705-712.(in Chinese). doi: 10.37188/CJLCD.2020-0250

    [9] NIU B, WEN W, REN W et al. Single image super-resolution via a holistic attention network[C], 191-207(2020).

    [10] DONG C, LOY C C, HE K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    [11] DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C], 391-407(2016).

    [12] SHI W, CABALLERO J, HUSZÁR F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C], 1874-1883(2016).

    [13] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C], 1646-1654(2016).

    [14] KIM H et al. Enhanced deep residual networks for single image super-resolution[C], 1132-1140(2016).

    [15] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C], 1637-1645(2016).

    [16] TAI Y, YANG J, LIU X M. Image super-resolution via deep recursive residual network[C], 2790-2798(2017).

    [17] ZHANG Y L, TIAN Y P, KONG Y et al. Residual dense network for image super-resolution[C], 2472-2481(2018).

    [18] LI J C, FANG F M, MEI K F et al. Multi-scale Residual Network for Image Super-resolution[M]. Computer Vision-ECCV 2018, 527-542(2018).

    [19] HUI Z, GAO X B, YANG Y C et al. Lightweight image super-resolution with information multi-distillation network[C], 2024-2032(2019).

    [20] HE X Y, MO Z T, WANG P S et al. ODE-inspired network design for single image super-resolution[C], 1732-1741(2019).

    [21] LI L X, FENG H S, ZHENG B et al. DID: a nested dense in dense structure with variable local dense blocks for super-resolution image reconstruction[C], 2582-2589(2020).

    [22] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C], 711-730(2010).

    [23] MARTIN D, FOWLKES C et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C], 416-423(2001).

    [24] HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C], 5197-5206(2015).

    [25] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29, 1153-1160(1981).

    [26] LAI W S, HUANG J B, AHUJA N et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C], 5835-5843(2017).

    [27] LUO X T, XIE Y, ZHANG Y L et al. LatticeNet: towards lightweight image super-resolution with lattice block[C], 2020, 279-289(2020).

    Tools

    Get Citation

    Copy Citation Text

    Deqiang CHENG, Jiamin ZHAO, Qiqi KOU, Liangliang CHEN, Chenggong HAN. Multi-scale dense feature fusion network for image super-resolution[J]. Optics and Precision Engineering, 2022, 30(20): 2489

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: May. 9, 2022

    Accepted: --

    Published Online: Oct. 27, 2022

    The Author Email: Qiqi KOU (kouqiqi@cumt.edu.cn)

    DOI:10.37188/OPE.20223020.2489

    Topics