Acta Optica Sinica, Volume. 36, Issue 10, 1011005(2016)
Fourier Ptychographic Microscopy: Theory, Advances, and Applications
[1] [1] Leung B O, Chou K C. Review of super-resolution fluorescence microscopy for biology[J]. Applied Spectroscopy, 2011, 65(9): 967-980.
[2] [2] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9): 739-745.
[3] [3] Appleton B, Bradley A P, Wildermoth M. Towards optimal image stitching for virtual microscopy[J]. Proceedings of the Digital Image Computering on Techniques and Applications, 2006.
[4] [4] Ma B, Zimmermann T, Rohde M, et al. Use of autostitch for automatic stitching of microscope images[J]. Micron, 2007, 38(5): 492-499.
[5] [5] Zuo Chao, Chen Qian, Sun Jiasong, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: A review[J]. Chinese J Lasers, 2016, 43(6): 0609002.
[6] [6] Gonsalves R A. Phase retrieval from modulus data[J]. Journal of the Optical Society of America, 1976, 66(9): 961-964.
[7] [7] Fienup J R. Phase retrieval algorithms: A comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.
[8] [8] Elser V. Phase retrieval by iterated projections[J]. Journal of the Optical Society of America A, 2003, 20(1): 40-55.
[9] [9] Candes E J, Eldar Y C, Strohmer T, et al. Phase retrieval via matrix completion[J]. Siam Journal on Imaging Sciences, 2013, 6(1): 199-225.
[10] [10] Candes E J, Strohmer T, Voroninski V. Phase lift: Exact and stable signal recovery from magnitude measurements via convex programming[J]. Communications on Pure and Applied Mathematics, 2013, 66(8): 1241-1274.
[11] [11] Candes E J, Li X, Soltanolkotabi M. Phase retrieval via wirtinger flow: Theory and algorithms[J]. IEEE Transactions on Information Theory, 2015, 61(4): 1985-2007.
[12] [12] Waldspurger I, d′Aspremont A, Mallat S. Phase recovery, max cut and complex semidefinite programming[J]. Mathematical Programming, 2015, 149(1): 47-81.
[13] [13] Meinel A B. Aperture synthesis using independent telescopes[J]. Applied Optics, 1970, 9(11): 2501-2504.
[14] [14] Turpin T M, Gesell L H, Lapides J H, et al. Theory of the synthetic aperture microscope[C]. SPIE, 1995, 2566: 230-240.
[15] [15] Jang J S, Javidi B. Three-dimensional synthetic aperture integral imaging[J]. Optics Letters, 2002, 27(13): 1144-1146.
[16] [16] Stern A, Javidi B. 3D computational synthetic aperture integral imaging (COMPSAII)[J]. Optics Express, 2003, 11(19): 2446-2451.
[17] [17] Mico V, Zalevsky Z, Garcia-Martinez P, et al. Synthetic aperture superresolution with multiple off-axis holograms[J]. Journal of the Optical Society of America A, 2006, 23(12): 3162-3170.
[18] [18] Di J, Zhao J, Jiang H, et al. High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning[J]. Applied Optics, 2008, 47(30): 5654-5659.
[19] [19] Hillman T R, Gutzler T, Alexandrov S A, et al. High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy[J]. Optics Express, 2009, 17(10): 7873-7892.
[20] [20] Granero L, MicóV, Zalevsky Z, et al. Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information[J]. Applied Optics, 2010, 49(5): 845-857.
[21] [21] Gutzler T, Hillman T R, Alexandrov S A, et al. Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue[J]. Optics Letters, 2010, 35(8): 1136-1138.
[22] [22] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 2013, 38(22): 4845-4848.
[23] [23] Pacheco S, Salahieh B, Milster T, et al. Transfer function analysis in epi-illumination Fourier ptychography[J]. Optics Letters, 2015, 40(22): 5343-5346.
[24] [24] Faulkner H M, Rodenburg J M. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.
[25] [25] Rodenburg J M, Hurst A C, Cullis A G, et al. Hard-X-ray lensless imaging of extended objects[J]. Physical Review Letters, 2007, 98(3): 034801.
[26] [26] Rodenburg J M. Ptychography and related diffractive imaging methods[J]. Advances in Imaging and Electron Physics, 2008, 150: 87-184.
[27] [27] Yao Yudong, Liu Cheng, Pan Xingchen, et al. Research status and development trend of PIE imaging method[J]. Chinese J Lasers, 2016, 43(6): 0609001.
[28] [28] Horstmeyer R, Yang C. A phase space model of Fourier ptychographic microscopy[J]. Optics Express, 2014, 22(1): 338-358.
[29] [29] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256-1262.
[30] [30] Thibault P, Dierolf M, Bunk O, et al. Probe retrieval in ptychographic coherent diffractive imaging[J]. Ultramicroscopy, 2009, 109(4): 338-343.
[31] [31] Maiden A M, Humphry M J, Rodenburg J M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach[J]. Journal of the Optical Society of America A, 2012, 29(8): 1606-1614.
[32] [32] Godden T M, Suman R, Humphry M J, et al. Ptychographic microscope for three-dimensional imaging[J]. Optics Express, 2014, 22(10): 12513-12523.
[33] [33] Maiden A M, Humphry M J, Sarahan M C, et al. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 2012, 120: 64-72.
[34] [34] Edo T B, Batey D J, Maiden A M, et al. Sampling in X-ray ptychography[J]. Physical Review A, 2013, 87(5): 053850.
[35] [35] Batey D J, Edo T B, Rau C, et al. Reciprocal-space up-sampling from real-space over sampling in X-ray ptychography[J]. Physical Review A, 2014, 89(4): 043812.
[36] [36] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494(7435): 68-71.
[37] [37] Batey D J, Claus D, Rodenburg J M. Information multiplexing in ptychography[J]. Ultramicroscopy, 2014, 138: 13-21.
[38] [38] Karl R, Bevis C, Lopez-Rios R, et al. Spatial, spectral, and polarization multiplexed ptychography[J]. Optics Express, 2015, 23(23): 30250-30258.
[39] [39] Bian L, Suo J, Situ G, et al. Content adaptive illumination for Fourier ptychography[J]. Optics Letters, 2014, 39(23): 6648-6651.
[40] [40] Dong S, Bian Z, Shiradkar R, et al. Sparsely sampled Fourier ptychography[J]. Optics Express, 2014, 22(5): 5455-5464.
[41] [41] Dong S, Shiradkar R, Nanda P, et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging[J]. Biomedical Optics Express, 2014, 5(6): 1757-1767.
[42] [42] Tian L, Li X, Ramchandran K, et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope[J]. Biomedical Optics Express, 2014, 5(7): 2376-2389.
[43] [43] Guo K, Dong S, Nanda P, et al. Optimization of sampling pattern and the design of Fourier ptychographic illuminator[J]. Optics Express, 2015, 23(5): 6171-6180.
[44] [44] Tian L, Liu Z, Yeh L-H, et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy[J]. Optica, 2015, 2(10): 904-911.
[45] [45] Zhang Y, Jiang W, Tian L, et al. Self-learning based Fourier ptychographic microscopy[J]. Optics Express, 2015, 23(14): 18471-18486.
[46] [46] Bian Z, Dong S, Zheng G. Adaptive system correction for robust Fourier ptychographic imaging[J]. Optics Express, 2013, 21(26): 32400-32410.
[47] [47] Horstmeyer R, Ou X, Chung J, et al. Overlapped Fourier coding for optical aberration removal[J]. Optics Express, 2014, 22(20): 24062-24080.
[48] [48] Jiang W, Zhang Y, Dai Q. Multi-channel super-resolution with Fourier ptychographic microscopy[J]. Proceedings of the SPIE, 2014, 9273: 927336.
[49] [49] Ou X, Zheng G, Yang C. Embedded pupil function recovery for Fourier ptychographic microscopy[J]. Optics Express, 2014, 22(5): 4960-4972.
[50] [50] Bian L, Suo J, Zheng G, et al. Fourier ptychographic reconstruction using Wirtinger flow optimization[J]. Optics Express, 2015, 23(4): 4856-4866.
[51] [51] Horstmeyer R, Chen R Y, Ou X, et al. Solving ptychography with a convex relaxation[J]. New Journal of Physics, 2015, 17(5): 053044.
[52] [52] Li P, Batey D J, Edo T B, et al. Separation of three-dimensional scattering effects in tilt-series Fourier ptychography[J]. Ultramicroscopy, 2015, 158: 1-7.
[53] [53] Ou X, Horstmeyer R, Zheng G, et al. High numerical aperture Fourier ptychography: Principle, implementation and characterization[J]. Optics Express, 2015, 23(3): 3472-3491.
[54] [54] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J].Optica, 2015, 2(2): 104-111.
[56] [56] Xie Z, Ma H, Qi B, et al. Pupil-resizing Fourier ptychography[C]. SPIE, 2015,9795: 979502.
[57] [57] Yeh L-H, Dong J, Zhong J, et al. Experimental robustness of Fourier ptychography phase retrieval algorithms[J]. Optics Express, 2015, 23(26): 33214-33240.
[58] [58] Zuo C, Sun J, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 2016, 24(18): 20724-20744.
[59] [59] Zhang Y, Jiang W, Dai Q. Nonlinear optimization approach for Fourier ptychographic microscopy[J]. Optics Express, 2015, 23(26): 33822-33835.
[60] [60] Dong S, Guo K, Nanda P, et al. FP scope: A field-portable high-resolution microscope using a cellphone lens[J]. Biomedical Optics Express, 2014, 5(10): 3305-3310.
[61] [61] Dong S, Horstmeyer R, Shiradkar R, et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J]. Optics Express, 2014, 22(11): 13586-13599.
[62] [62] Dong S, Nanda P, Shiradkar R, et al. High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography[J]. Optics Express, 2014, 22(17): 20856-20870.
[63] [63] Li Z, Zhang J, Wang X, et al. High resolution integral holography using Fourier ptychographic approach[J]. Optics Express, 2014, 22(26): 31935-31947.
[64] [64] Williams A, Chung J, Ou X, et al. Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis[J]. Journal of Biomedical Optics, 2014, 19(6): 066007.
[65] [65] Chung J, Ou X, Kulkarni R P, et al. Counting White blood cells from a blood smear using Fourier ptychographic microscopy[J]. Plos One, 2015, 10(7): e0133489.
[66] [66] Dong S, Liao J, Guo K, et al. Resolution doubling with a reduced number of image acquisitions[J]. Biomedical Optics Express, 2015, 6(8): 2946-2952.
[67] [67] Dong S, Nanda P, Guo K, et al. Incoherent Fourier ptychographic photography using structured light[J]. Photonics Research, 2015, 3(1): 19-23.
[68] [68] Guo K, Bian Z, Dong S, et al. Microscopy illumination engineering using a low-cost liquid crystal display[J]. Biomedical Optics Express, 2015, 6(2): 574-579.
[69] [69] Horstmeyer R, Ou X, Zheng G, et al. Digital pathology with Fourier ptychography[J]. Computerized Medical Imaging and Graphics, 2015, 42: 38-43.
[70] [70] Kuang C, Ma Y, Zhou R, et al. Digital micromirror device-based laser-illumination Fourier ptychographic microscopy[J]. Optics Express, 2015, 23(21): 26999-27010.
[71] [71] Luo W, Greenbaum A, Zhang Y, et al. Synthetic aperture-based on-chip microscopy[J]. Light: Science & Applications, 2015, 4(3): e261.
[72] [72] Xie Z, Ma H, Qi B, et al. Aperture-scanning Fourier ptychographic encoding with phase modulation[J]. Chinese Physics Letters, 2015, 32(12): 124203.
[73] [73] Chung J, Kim J, Ou X, et al. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography[J]. Biomedical Optics Express, 2016, 7(2): 352-368.
[74] [74] Pacheco S, Zheng G, Liang R. Reflective Fourier ptychography[J]. Journal of Biomedical Optics, 2016, 21(2): 026010.
[75] [75] Zheng G, Kolner C, Yang C. Microscopy refocusing and dark-field imaging by usinga simple LED array[J]. Optics Letters, 2011, 36(20): 3987-3989.
[76] [76] Tian L, Wang J, Waller L. 3D differential phase-contrast microscopy with computational illumination using an LED array[J]. Optics Letters, 2014, 39(5): 1326-1329.
[77] [77] Guo K, Liao J, Bian Z, et al. Instant scope: A low-cost whole slide imaging system with instant focal plane detection[J]. Biomedical Optics Express, 2015, 6(9): 3210-3216.
[78] [78] Liu Z, Tian L, Waller L. Multi-mode microscopy in real-time with LED array illumination[C]. Proceedings of the SPIE, 2015, 9336: 93362M.
[79] [79] Tian L, Waller L. Quantitative differential phase contrast imaging in an LED array microscope[J]. Optics Express, 2015, 23(9): 11394-11403.
[80] [80] Zuo C, Sun J, Feng S, et al. Programmable colored illumination microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement[J]. Optics and Lasers in Engineering, 2016, 78:35-47.
[81] [81] Sun J, Chen Q, Zhang Y, et al. Optimized multiplexing super-resolution imaging based on a Fourier ptychographic microscope[C]. Proceedings of the SPIE, 2015, 9672: 967219.
[82] [82] Sun J, Zhang Y, Zuo C, et al. Coded multi-angular illumination for Fourier ptychography based on Hadamard codes[J]. Proceedings of the SPIE, 2015, 9524: 95242C.
[83] [83] Sun J, Chen Q, Zhang Y, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomedical Optics Express, 2016, 7(4): 1336-1350.
[84] [84] Sun J, Chen Q, Zhang Y, et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J]. Optics Express, 2016, 24(14): 15765-15781.
[85] [85] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87.
[86] [86] Gustafsson M G L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086.
[87] [87] Gustafsson M G L, Shao L, Carlton P M, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 2008, 94(12): 4957-4970.
[88] [88] Mudry E, Belkebir K, Girard J, et al. Structured illumination microscopy using unknown speckle patterns[J]. Nature Photonics, 2012, 6(5): 312-315.
[89] [89] Wagner O, Schwarz A, Shemer A, et al. Superresolved imaging based on wavelength multiplexing of projected unknown speckle patterns[J]. Applied Optics, 2015, 54(13): D51-D60.
[90] [90] Yilmaz H, van Putten E G, Bertolotti J, et al. Speckle correlation resolution enhancement of wide-field fluorescence imaging[J]. Optica, 2015, 2(5): 424-429.
Get Citation
Copy Citation Text
Sun Jiasong, Zhang Yuzhen, Chen Qian, Zuo Chao. Fourier Ptychographic Microscopy: Theory, Advances, and Applications[J]. Acta Optica Sinica, 2016, 36(10): 1011005
Category:
Received: Jun. 1, 2016
Accepted: --
Published Online: Oct. 12, 2016
The Author Email: Jiasong Sun (sjs0808402013@163.com)