Laser & Optoelectronics Progress, Volume. 62, Issue 8, 0828003(2025)

Improved ResUNet Method for Extracting Buildings from Remote Sensing Images

Qianrong Sun* and Xiaopeng Wang
Author Affiliations
  • School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu , China
  • show less
    Figures & Tables(12)
    SGMFResUNet structure
    Residual blocks in ResUNet. (a) Residual block a; (b) residual block b
    Asymmetric convolution block
    Improved residual blocks in SGMFResUNet. (a) ResBlock-A; (b) ResBlock-B; (c) ResBlock-C
    Spatial information enhanced GAM
    Dual pooling dense pyramid
    HDEM-4I module
    Building extraction results on WHU dataset. (a) Original images; (b) labels; (c) ResUNet; (d) HRNetV2; (e) MSFCN; (f) BuildFormer; (g) DC-Swin; (h) SDSC-UNet; (i) SGMFResUNet
    Building extraction results on Massachusetts dataset. (a) Original images; (b) labels; (c) ResUNet; (d) HRNetV2; (e) MSFCN; (f) BuildFormer; (g) DC-Swin; (h) SDSC-UNet; (i) SGMFResUNet
    • Table 1. Comparison of extraction accuracy of different networks on WHU dataset

      View table

      Table 1. Comparison of extraction accuracy of different networks on WHU dataset

      NetworkRIoU /%RMIoU /%RPrecision /%RRecall /%sF1 /%Parameter /MbitTest time per picture /s
      ResUNet88.8193.3092.9095.2794.079.6010.066
      HRNetV290.3694.2393.6996.0394.8528.5450.091
      MSFCN90.5894.3995.7594.4395.0914.1700.069
      BuildFormer90.2994.1795.2194.3594.7838.3540.064
      DC-Swin87.3792.4694.5192.0493.2666.9010.073
      SDSC-UNet90.4694.3195.6094.3994.9921.3190.085
      SGMFResUNet90.7494.4694.2396.0895.1524.7210.102
    • Table 2. Comparison of extraction accuracy of different networks on Massachusetts dataset

      View table

      Table 2. Comparison of extraction accuracy of different networks on Massachusetts dataset

      NetworkRIoU /%RMIoU /%RPrecision /%RRecall /%sF1 /%Parameters /MTest time per picture/s
      ResUNet73.7184.2280.8389.3484.879.6010.067
      HRNetV275.1685.1282.0789.9385.8228.5450.088
      MSFCN75.4885.4285.4286.6486.0214.1700.069
      BuildFormer75.6585.5185.4986.7986.1438.3540.062
      DC-Swin71.2082.8282.4683.9183.1866.9010.073
      SDSC-UNet76.1685.8586.2786.6586.4621.3190.084
      SGMFResUNet77.0086.2483.1291.2987.0124.7210.103
    • Table 3. Comparison of ablation experimental indexes

      View table

      Table 3. Comparison of ablation experimental indexes

      DatasetNetworkRIoURMIoURPrecisionRRecallsF1
      WHUBaseline89.6293.7893.4995.5894.52
      Baseline+SIE-GAM89.8093.8993.5495.7494.63
      Baseline+HDEM89.9593.9193.6795.9094.77
      Baseline+DPDP90.1394.0993.9095.7394.81
      Baseline+DPDP+ACB90.0494.0493.9895.5594.76
      Baseline+DPDP+HDEM90.1294.0893.6995.9594.80
      Baseline+DPDP+ACB+HDEM90.3794.2494.2195.6694.93

      Baseline+DPDP+ACB+HDEM+SIE-GAM

      (SGMFResUNet)

      90.7494.4694.2396.0895.15
      MassachusettsBaseline73.5284.0679.6390.5584.74
      Baseline+SIE-GAM75.4285.3782.0590.9486.27
      Baseline+HDEM74.3884.6280.9490.1785.31
      Baseline+DPDP73.6684.1880.4689.7184.83
      Baseline+DPDP+ACB74.7684.8581.2690.3385.56
      Baseline+DPDP+HDEM73.9084.3080.2190.3884.99
      Baseline+DPDP+ACB+HDEM75.3985.2481.6390.8085.97

      Baseline+DPDP+ACB+HDEM+SIE-GAM

      (SGMFResUNet)

      77.0086.2483.1291.2987.01
    Tools

    Get Citation

    Copy Citation Text

    Qianrong Sun, Xiaopeng Wang. Improved ResUNet Method for Extracting Buildings from Remote Sensing Images[J]. Laser & Optoelectronics Progress, 2025, 62(8): 0828003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Sep. 4, 2024

    Accepted: Oct. 28, 2024

    Published Online: Apr. 8, 2025

    The Author Email:

    DOI:10.3788/LOP241955

    CSTR:32186.14.LOP241955

    Topics