International Journal of Extreme Manufacturing, Volume. 7, Issue 3, 32007(2025)

Recent progress in triboelectric platforms: engineering materials to industrial applications from the perspective of manufacturing

Ra Yoonsang, Song Minjun, Lee Donghan, Jang Sunmin, Kim Yu-seop, Chae Joonmin, Cho Sumin, Kam Dongik, Lee Donghyun, Lee Gibeom, Lee Younghoon, and Choi Dongwhi
References(111)

[1] [1] Van Noorden R 2014 The rechargeable revolution: a better batteryNature50726–28

[2] [2] Janek J and Zeier W G 2016 A solid future for battery developmentNat. Energy116141

[3] [3] Ryu H, Yoon H J and Kim S W 2019 Hybrid energy harvesters: toward sustainable energy harvestingAdv. Mater.311802898

[4] [4] Fan F R, Tian Z Q and Wang Z L 2012 Flexible triboelectric generatorNano Energy1328–34

[5] [5] Wang Z L and Song J H 2006 Piezoelectric nanogenerators based on zinc oxide nanowire arraysScience312242–6

[6] [6] Shi B J, Li Z and Fan Y B 2018 Implantable energy-harvesting devicesAdv. Mater.301801511

[7] [7] Lee Y H 2024 Beyond the shockley-queisser limit: exploring new frontiers in solar energy harvestScience383eado4308

[8] [8] Muddasar M, Nasiri M A, Cantarero A, Gmez C, Culebras M and Collins M N 2024 Lignin-derived ionic conducting membranes for low-grade thermal energy harvestingAdv. Funct. Mater.342306427

[9] [9] Kim K Jet al2024 Understanding piezoionic effects in chemo–mechanical energy harvesting by carbon nanotube yarn twistsAdv. Energy Mater.142303343

[10] [10] Lee S, Lee Y, Park J and Choi D 2014 Stitchable organic photovoltaic cells with textile electrodesNano Energy988–93

[11] [11] Khan S, Kim J, Roh K, Park G and Kim W 2021 High power density of radiative-cooled compact thermoelectric generator based on body heat harvestingNano Energy87106180

[12] [12] Lee Y, Kim W, Bhatia D, Hwang H J, Lee S and Choi D 2017 Cam-based sustainable triboelectric nanogenerators with a resolution-free 3D-printed systemNano Energy38326–34

[13] [13] Li T, Xu Y, Willander M, Xing F, Cao X, Wang N and Wang Z L 2016 Lightweight triboelectric nanogenerator for energy harvesting and sensing tiny mechanical motionAdv. Funct. Mater.264370–6

[14] [14] Jang S, Cho S, Lee D, Ra Y, Kam D, Lee J, Lee G, La M and Choi D 2022 Development of large-scale electret fabrication system for triboelectric nanogenerator electrical output amplificationFunct. Compos. Struct.4045004

[15] [15] Hwang H J, Kim K Y, Kim J S, Kim T, Kim D H, Lee Y and Choi D 2024 Ionic liquid with hydrogen bonding reducing leakage charge for enhancing triboelectric performanceNano Energy125109535

[16] [16] Jang S, La M, Cho S, Yun Y, Choi J H, Ra Y, Park S J and Choi D 2020 Monocharged electret based liquid-solid interacting triboelectric nanogenerator for its boosted electrical output performanceNano Energy70104541

[17] [17] Kim W, Hwang H J, Bhatia D, Lee Y, Baik J M and Choi D 2016 Kinematic design for high performance triboelectric nanogenerators with enhanced working frequencyNano Energy2119–25

[18] [18] Lee Y, Ren Z J, Hsiao Y H, Kim S, Song W J, Lee C and Chen Y F 2024 Liftoff of a soft-actuated micro-aerial-robot powered by triboelectric nanogeneratorsNano Energy126109602

[19] [19] Lee Y, Cha S H, Kim Y W, Choi D and Sun J Y 2018 Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogeneratorsNat. Commun.91804

[20] [20] Zhou Met al2022 Contact separation triboelectric nanogenerator based neural interfacing for effective sciatic nerve restorationAdv. Funct. Mater.322200269

[21] [21] Wang S H, Lin L, Xie Y N, Jing Q S, Niu S M and Wang Z L 2013 Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanismNano Lett.132226–33

[22] [22] Meng B, Tang W, Too Z H, Zhang X S, Han M D, Liu W and Zhang H X 2013 A transparent single-friction-surface triboelectric generator and self-powered touch sensorEnergy Environ. Sci.63235–40

[23] [23] Wang S H, Xie Y N, Niu S M, Lin L and Wang Z L 2014 Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modesAdv. Mater.262818–24

[24] [24] Sun R N, Gregor S and Keating B 2015 Information technology platforms: conceptualisation and a review of emerging research in IS research26th Australasian Conf. on Information Systems(ACIS)

[25] [25] Gawer A 2014 Bridging differing perspectives on technological platforms: toward an integrative frameworkRes. Policy431239–49

[26] [26] Kim D J and Kogut B 1996 Technological platforms and diversificationOrgan. Sci.7283–301

[27] [27] Choi Det al2023 Recent advances in triboelectric nanogenerators: from technological progress to commercial applicationsACS Nano1711087–219

[28] [28] Lee G, Lee D, Im G B and Lee Y 2024 A review on soft ionic touch point sensorsEnergy Environ. Mater.7e12794

[29] [29] Lee Y, Song W J and Sun J Y 2020 Hydrogel soft roboticsMater. Today Phys.15100258

[30] [30] Kronenfeld J M, Rother L, Saccone M A, Dulay M T and DeSimone J M 2024 Roll-to-roll, high-resolution 3D printing of shape-specific particlesNature627306–12

[31] [31] Salauddin M, Rana S M S, Sharifuzzaman M, Song H S, Reza M S, Jeong S H and Park J Y 2023 Highly electronegative V2CTx/silicone nanocomposite-based serpentine triboelectric nanogenerator for wearable self-powered sensors and sign language interpretationAdv. Energy Mater.132203812

[32] [32] Cho S, Lee D, Jang S, Cho S, Shim J, Jang Y, Lin Z H, Choi K and Choi D 2023 Physical intelligence-based working mode adaptable triboelectric nanogenerator for effective wind energy harvesting in broad rangeNano Energy113108608

[33] [33] Lin S P, Zhu L F, Qiu Y, Jiang Z Y, Wang Y F, Zhu J and Wu H P 2021 A self-powered multi-functional sensor based on triboelectric nanogenerator for monitoring states of rotating motionNano Energy83105857

[34] [34] Yun Y, Jang S, Cho S, Lee S H, Hwang H J and Choi D 2021 Exo-shoe triboelectric nanogenerator: toward high-performance wearable biomechanical energy harvesterNano Energy80105525

[35] [35] Yu A F, Pu X, Wen R M, Liu M M, Zhou T, Zhang K, Zhang Y, Zhai J Y, Hu W G and Wang Z L 2017 Core–shell-yarn-based triboelectric nanogenerator textiles as power clothsACS Nano1112764–71

[36] [36] Chen Yet al2022 Flexible, durable, and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interactionNano Energy104107929

[37] [37] Luo J J, Han K, Wu X Q, Cai H H, Jiang T, Zhou H B and Wang Z L 2021 Self-powered mobile sterilization and infection control systemNano Energy88106313

[38] [38] Wu C S, Wang X, Lin L, Guo H Y and Wang Z L 2016 Based triboelectric nanogenerators made of stretchable interlocking kirigami patternsACS Nano104652–9

[39] [39] Yang P K, Lin Z H, Pradel K C, Lin L, Li X H, Wen X N, He J H and Wang Z L 2015 Paper-based origami triboelectric nanogenerators and self-powered pressure sensorsACS Nano9901–7

[40] [40] Kim K N, Chun J, Kim J W, Lee K Y, Park J U, Kim S W, Wang Z L and Baik J M 2015 Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environmentsACS Nano96394–400

[41] [41] Chen S W, Cao X, Wang N, Ma L, Zhu H R, Willander M, Jie Y and Wang Z L 2017 An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensingAdv. Energy Mater.71601255

[42] [42] Lee Y, Lim S, Song W J, Lee S, Yoon S J, Park J M, Lee M G, Park Y L and Sun J Y 2022 Triboresistive touch sensing: grid-free touch-point recognition based on monolayered ionic power generatorsAdv. Mater.342108586

[43] [43] Song W J, Lee Y, Jung Y, Kang Y W, Kim J, Park J M, Park Y L, Kim H Y and Sun J Y 2021 Soft artificial electroreceptors for noncontact spatial perceptionSci. Adv.7eabg9203

[44] [44] Khan S A, Zhang H L, Xie Y, Gao M, Shah M A, Qadir A and Lin Y 2017 Flexible triboelectric nanogenerator based on carbon nanotubes for self-powered weighingAdv. Eng. Mater.191600710

[45] [45] Jiang C M, Wu C, Li X J, Yao Y, Lan L Y, Zhao F N, Ye Z Z, Ying Y B and Ping J F 2019 All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheetsNano Energy59268–76

[46] [46] Wang Z W, Luan C C, Zhu Y B, Liao G X, Liu J P, Li X J, Yao X H and Fu J Z 2021 Integrated and shape-adaptable multifunctional flexible triboelectric nanogenerators using coaxial direct ink writing 3D printingNano Energy90106534

[47] [47] Qi Y C, Kuang Y, Liu Y Y, Liu G X, Zeng J H, Zhao J Q, Wang L, Zhu M L and Zhang C 2022 Kirigami-inspired triboelectric nanogenerator as ultra-wide-band vibrational energy harvester and self-powered acceleration sensorAppl. Energy327120092

[48] [48] Tao K, Yi H P, Yang Y, Tang L H, Yang Z S, Wu J, Chang H L and Yuan W Z 2020 Miura-origami-inspired electret/triboelectric power generator for wearable energy harvesting with water-proof capabilityMicrosyst. Nanoeng.656

[49] [49] Tao Ket al2020 Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvestingNano Energy67104197

[50] [50] Chen H M, Xu Y, Zhang J S, Wu W T and Song G F 2019 Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructureNano Energy58304–11

[51] [51] Dong K, Wu Z Y, Deng J N, Wang A C, Zou H Y, Chen C Y, Hu D M, Gu B H, Sun B Z and Wang Z L 2018 A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensingAdv. Mater.301804944

[52] [52] He J H, Xie Z Q, Yao K M, Li D F, Liu Y M, Gao Z, Lu W, Chang L Q and Yu X G 2021 Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronicsNano Energy81105590

[53] [53] Jeong S H, Lee Y, Lee M G, Song W J, Park J U and Sun J Y 2021 Accelerated wound healing with an ionic patch assisted by a triboelectric nanogeneratorNano Energy79105463

[54] [54] Liu T, Liu M M, Dou S, Sun J M, Cong Z F, Jiang C Y, Du C H, Pu X, Hu W G and Wang Z L 2018 Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybridsACS Nano122818–26

[55] [55] Sun H L, Zhao Y, Wang C F, Zhou K K, Yan C, Zheng G Q, Huang J J, Dai K, Liu C T and Shen C Y 2020 Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogeneratorNano Energy76105035

[56] [56] Parida K, Thangavel G, Cai G F, Zhou X R, Park S, Xiong J Q and Lee P S 2019 Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogeneratorNat. Commun.102158

[57] [57] Lee Y, Song W J, Jung Y, Yoo H, Kim M Y, Kim H Y and Sun J Y 2020 Ionic spiderwebsSci. Robot.5eaaz5405

[58] [58] Luo N, Feng Y G, Wang D A, Zheng Y B, Ye Q, Zhou F and Liu W M 2020 New self-healing triboelectric nanogenerator based on simultaneous repair friction layer and conductive layerACS Appl. Mater. Interfaces1230390–8

[59] [59] Yang D, Ni Y F, Kong X X, Li S Y, Chen X Y, Zhang L Q and Wang Z L 2021 Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatmentACS Nano1514653–61

[60] [60] Wang Het al2024 Bio-based and recyclable self-healing elastomer for the application of self-powered triboelectric nanogenerator in low-temperatureAdv. Funct. Mater.342311649

[61] [61] Parida K, Kumar V, Jiangxin W, Bhavanasi V, Bendi R and Lee P S 2017 Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applicationsAdv. Mater.291702181

[62] [62] Li H L, Xu F C, Wang J L, Zhang J J, Wang H, Li Y and Sun J Q 2023 Self-healing fluorinated poly(urethane urea) for mechanically and environmentally stable, high performance, and versatile fully self-healing triboelectric nanogeneratorsNano Energy108108243

[63] [63] Fan F R, Lin L, Zhu G, Wu W Z, Zhang R and Wang Z L 2012 Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic filmsNano Lett.123109–14

[64] [64] Seol M L, Woo J H, Lee D I, Im H, Hur J and Choi Y K 2014 Nature-replicated nano-in-micro structures for triboelectric energy harvestingSmall103887–94

[65] [65] Kim D, Tcho I W, Jin I K, Park S J, Jeon S B, Kim W G, Cho H S, Lee H S, Jeoung S C and Choi Y K 2017 Direct-laser-patterned friction layer for the output enhancement of a triboelectric nanogeneratorNano Energy35379–86

[66] [66] Lee H, Lee H E, Wang H S, Kang S M, Lee D, Kim Y H, Shin J H, Lim Y W, Lee K J and Bae B S 2020 Hierarchically surface-textured ultrastable hybrid film for large-scale triboelectric nanogeneratorsAdv. Funct. Mater.302005610

[67] [67] Ahn Jet al2021 Morphology-controllable wrinkled hierarchical structure and its application to superhydrophobic triboelectric nanogeneratorNano Energy85105978

[68] [68] Peng Z H, Song J, Gao Y, Liu J, Lee C, Chen G R, Wang Z K, Chen J and Leung M K H 2021 A fluorinated polymer sponge with superhydrophobicity for high-performance biomechanical energy harvestingNano Energy85106021

[69] [69] Zhong W, Xu B G and Gao Y Y 2022 Engraved pattern spacer triboelectric nanogenerators for mechanical energy harvestingNano Energy92106782

[70] [70] Mudgal T, Tiwari M and Bharti D 2024 Cylindrical-electrode triboelectric nanogenerator for low-speed wind energy harvestingNano Energy123109388

[71] [71] Wang P H, Pan L, Wang J Y, Xu M Y, Dai G Z, Zou H Y, Dong K and Wang Z L 2018 An ultra-low-friction triboelectric–electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensorACS Nano129433–40

[72] [72] He L X, Zhang C G, Zhang B F, Yang O, Yuan W, Zhou L L, Zhao Z H, Wu Z Y, Wang J and Wang Z L 2022 A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoringACS Nano166244–54

[73] [73] Lee D, Cho S, Jang S, Ra Y, Jang Y, Yun Y and Choi D 2022 Toward effective irregular wind energy harvesting: self-adaptive mechanical design strategy of triboelectric-electromagnetic hybrid wind energy harvester for wireless environmental monitoring and green hydrogen productionNano Energy102107638

[74] [74] Cheng T H, Li Y K, Wang Y C, Gao Q, Ma T and Wang Z L 2019 Triboelectric nanogenerator by integrating a cam and a movable frame for ambient mechanical energy harvestingNano Energy60137–43

[75] [75] Xu Y H, Yang W X, Lu X H, Yang Y F, Li J P, Wen J M, Cheng T H and Wang Z L 2021 Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoringACS Nano1516368–75

[76] [76] Kim W, Pham K D and Choi D 2023 Rational design of a miniaturized mechanical frequency regulator for the sustained triboelectric generationNano Energy106108088

[77] [77] Yang Y F, Yu X, Meng L X, Li X, Xu Y H, Cheng T H, Liu S M and Wang Z L 2021 Triboelectric nanogenerator with double rocker structure design for ultra-low-frequency wave full-stroke energy harvestingExtrem. Mech. Lett.46101338

[78] [78] Ra Yet al2020 Triboelectric signal generation and its versatile utilization during gear-based ordinary power transmissionNano Energy73104745

[79] [79] Xie Z J, Wang Y, Yu M Y, Yu D, Lv J L, Yin J H, Liu J Q and Wu R S 2022 Triboelectric sensor for planetary gear fault diagnosis using data enhancement and CNNNano Energy103107804

[80] [80] Han Q K, Ding Z, Qin Z Y, Wang T Y, Xu X P and Chu F L 2020 A triboelectric rolling ball bearing with self-powering and self-sensing capabilitiesNano Energy67104277

[81] [81] Fu J M, Xia K Q and Xu Z W 2021 Double helix triboelectric nanogenerator for self-powered weight sensorsSens. ActuatorsA323112650

[82] [82] Ruan S H, Gao S, Feng J G, Kong Y, Han Q K and Chu F L 2024 Intelligent triboelectric V-belts with condition monitoring capabilityMech. Syst. Signal Process.209111132

[83] [83] Gu W G, Cao J, Dai S P, Hu H W, Zhong Y, Cheng G G, Zhang Z Q and Ding J N 2021 Self-powered slide tactile sensor with wheel-belt structures based on triboelectric effect and electrostatic inductionSens. ActuatorsA331113022

[84] [84] Kim M, Ra Y, Cho S, Jang S, Kam D, Yun Y, Kim H and Choi D 2021 Geometric gradient assisted control of the triboelectric effect in a smart brake system for self-powered mechanical abrasion monitoringNano Energy89106448

[85] [85] Cho S, Hanif Z, Yun Y, Khan Z A, Jang S, Ra Y, Lin Z-H, La M, Park S J and Choi D 2021 Triboelectrification-driven microbial inactivation in a conductive cellulose filter for affordable, portable, and efficient water sterilizationNano Energy88106228

[86] [86] Cao H Jet al2024 A freestanding rotating triboelectric nanogenerator with large area and high efficiency for triboelectric plasma CO2 reductionChem. Eng. J.489150798

[87] [87] Dai Yet al2024 Efficient removal of oil mist via triboelectric negative air ionsNano Energy126109692

[88] [88] Liu Y K, Zhang D Z, Ji X Y, Xu Z Y, Zhang H, Mao R Y, Liu W Z, Wang J H and Sun Y H 2024 Rotational contact triboelectric nanogenerator driven by water flows inspired by waterwheels and their applications for lead ion removalNano Energy128109800

[89] [89] Ma X and Fernndez F M 2024 Triboelectric nanogenerator-coated blade spray mass spectrometry for volume-limited drug analysisInt. J. Mass Spectrom.495117164

[90] [90] Guo Y C, Zhang H N, Zhong Y M, Shi S W, Wang Z Z, Wang P H and Zhao Y 2023 Triboelectric nanogenerator-based near-field electrospinning system for optimizing PVDF fibers with high piezoelectric performanceACS Appl. Mater. Interfaces155242–52

[91] [91] Sun W J, Li B, Zhang F, Fang C L, Lu Y J, Gao X, Cao C J, Chen G M, Zhang C and Wang Z L 2021 TENG-Bot: triboelectric nanogenerator powered soft robot made of uni-directional dielectric elastomerNano Energy85106012

[92] [92] Zhu J X, Ren Z H and Lee C 2021 Toward healthcare diagnoses by machine-learning-enabled volatile organic compound identificationACS Nano15894–903

[93] [93] Sun C H, Shi Q F, Hasan D, Yazici M S, Zhu M L, Ma Y M, Dong B W, Liu Y F and Lee C 2019 Self-powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensorsNano Energy58612–23

[94] [94] Zhu J X, Ji S L, Ren Z H, Wu W Y, Zhang Z H, Ni Z H, Liu L, Zhang Z S, Song A G and Lee C 2023 Triboelectric-induced ion mobility for artificial intelligence-enhanced mid-infrared gas spectroscopyNat. Commun.142524

[95] [95] Gu D, Li X G, Wang H S, Li M Z, Xi Y, Chen Y P, Wang J, Rumyntseva M N and Gaskov A M 2018 Light enhanced VOCs sensing of WS2 microflakes based chemiresistive sensors powered by triboelectronic nangeneratorsSens. ActuatorsB256992–1000

[96] [96] Zhu J X, Sun Z D, Xu J K, Walczak R D, Dziuban J A and Lee C 2021 Volatile organic compounds sensing based on Bennet doubler-inspired triboelectric nanogenerator and machine learning-assisted ion mobility analysisSci. Bull.661176–85

[97] [97] Chang Y H, Xu S Y, Dong B W, Wei J X, Le X H, Ma Y M, Zhou G Y and Lee C 2021 Development of triboelectric-enabled tunable Fabry-Prot photonic-crystal-slab filter towards wearable mid-infrared computational spectrometerNano Energy89106446

[98] [98] Ma H-Zet al2023 Metal–organic framework based triboelectric nanogenerator for a self-powered methanol sensor with high sensitivity and selectivityACS Appl. Mater. Interfaces1537563–70

[99] [99] Cheng X L, Song Y, Han M D, Meng B, Su Z M, Miao L M and Zhang H X 2016 A flexible large-area triboelectric generator by low-cost roll-to-roll process for location-based monitoringSens. ActuatorsA247206–14

[100] [100] Dhakar L, Gudla S, Shan X C, Wang Z P, Tay F E H, Heng C H and Lee C 2016 Large scale triboelectric nanogenerator and self-powered pressure sensor array using low cost roll-to-roll UV embossingSci. Rep.622253

[101] [101] Ra Yet al2023 Toward commercialization of mechanical energy harvester: reusable triboelectric nanogenerator based on closed-loop mass production of recyclable thermoplastic fluoropolymer with microstructuresInt. J. Energy Res.20236919663

[102] [102] Li H, Li R H, Fang X T, Jiang H W, Ding X R, Tang B, Zhou G F, Zhou R and Tang Y 2019 3D printed flexible triboelectric nanogenerator with viscoelastic inks for mechanical energy harvestingNano Energy58447–54

[103] [103] Chen B Det al2018 Three-dimensional ultra flexible triboelectric nanogenerator made by 3D printingNano Energy45380–9

[104] [104] Choi D, Kim D W, Yoo D, Cha K J, La M and Kim D S 2017 Spontaneous occurrence of liquid-solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leafNano Energy36250–9

[105] [105] Yoo D, Park S C, Lee S, Sim J Y, Song I, Choi D, Lim H and Kim D S 2019 Biomimetic anti-reflective triboelectric nanogenerator for concurrent harvesting of solar and raindrop energiesNano Energy57424–31

[106] [106] Zeng Y M, Luo Y, Lu Y R and Cao X 2022 Self-powered rain droplet sensor based on a liquid-solid triboelectric nanogeneratorNano Energy98107316

[107] [107] Wang Y F, Guo H Y, Liao J Q, Qin Y Y, Ali A and Li C Z 2023 Solid-liquid triboelectric nanogenerator based on curvature effect for harvesting mechanical and wave energyChem. Eng. J.476146571

[108] [108] Zhan T T, Zou H Y, Zhang H F, He P, Liu Z L, Chen J S, He M G, Zhang Y and Wang Z L 2023 Smart liquid-piston based triboelectric nanogenerator sensor for real-time monitoring of fluid statusNano Energy111108419

[109] [109] Xu M Y, Wang S, Zhang S L, Ding W B, Kien P T, Wang C, Li Z, Pan X X and Wang Z L 2019 A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipmentNano Energy57574–80

[110] [110] Sun W X, Zheng Y B, Li T H, Feng M, Cui S W, Liu Y P, Chen S G and Wang D A 2021 Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protectionEnergy217119388

[111] [111] Shin G, Yong H, Chung J, Cho E, Ju J H, Lin Z H, Kim D, Lee H, Koo B and Lee S 2021 Condensed droplet-based electricity generation via water-phase changeNano Energy82105713

Tools

Get Citation

Copy Citation Text

Ra Yoonsang, Song Minjun, Lee Donghan, Jang Sunmin, Kim Yu-seop, Chae Joonmin, Cho Sumin, Kam Dongik, Lee Donghyun, Lee Gibeom, Lee Younghoon, Choi Dongwhi. Recent progress in triboelectric platforms: engineering materials to industrial applications from the perspective of manufacturing[J]. International Journal of Extreme Manufacturing, 2025, 7(3): 32007

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Aug. 28, 2024

Accepted: Sep. 29, 2025

Published Online: Sep. 29, 2025

The Author Email:

DOI:10.1088/2631-7990/adac18

Topics