Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1714(2025)
Liquid and Solid-State Li Electrolyte Anode Interface Properties Comparison and Enhancement Strategies
[1] [1] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359–367.
[2] [2] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652–657.
[3] [3] SCHMUCH R, WAGNER R, HRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nat Energy, 2018, 3(4): 267–278.
[4] [4] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem Rev, 2014, 114(23): 11503–11618.
[5] [5] YU X W, MANTHIRAM A. Electrode–electrolyte interfaces in lithium-based batteries[J]. Energy Environ Sci, 2018, 11(3): 527–543.
[6] [6] MENG Y S, SRINIVASAN V, XU K. Designing better electrolytes[J]. Science, 2022, 378(6624): eabq3750.
[7] [7] XU B K. Electrolytes, interfaces and interphases: fundamentals and applications in batteries[M]. London, UK: Royal Society of Chemistry, 2023.
[8] [8] XU K. Interfaces and interphases in batteries[J]. J Power Sources, 2023, 559: 232652.
[9] [9] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem Rev, 2017, 117(15): 10403–10473.
[10] [10] ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nat Rev Mater, 2020, 5(3): 229–252.
[11] [11] GUO Y, WU S C, HE Y B, et al. Solid-state lithium batteries: Safety and prospects[J]. eScience, 2022, 2(2): 138–163.
[12] [12] CHEN R S, LI Q H, YU X Q, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chem Rev, 2020, 120(14): 6820–6877.
[13] [13] CUI L F, ZHANG S, JU J W, et al. A cathode homogenization strategy for enabling long-cycle-life all-solid-state lithium batteries[J]. Nat Energy, 2024, 9(9): 1084–1094.
[14] [14] LI M, WANG C S, CHEN Z W, et al. New concepts in electrolytes[J]. Chem Rev, 2020, 120(14): 6783–6819.
[15] [15] WANG L L, XIE R C, CHEN B B, et al.In-situvisualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries[J]. Nat Commun, 2020, 11(1): 5889.
[16] [16] GE S H, SASAKI T, GUPTA N, et al. Quantification of lithium battery fires in internal short circuit[J]. ACS Energy Lett, 2024, 9(12): 5747–5755.
[17] [17] DONG S W, SHENG L, WANG L, et al. Challenges and prospects of all-solid-state electrodes for solid-state lithium batteries[J]. Adv Funct Mater, 2023, 33(49): 2304371.
[18] [18] YANG H C, LI J, SUN Z H, et al. Reliable liquid electrolytes for lithium metal batteries[J]. Energy Storage Mater, 2020, 30: 113–129.
[19] [19] LI S, JIANG M W, XIE Y, et al. Developing high-performance lithium metal anode in liquid electrolytes: Challenges and progress[J]. Adv Mater, 2018, 30(17): e1706375.
[20] [20] WANG Q S, JIANG L H, YU Y, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93–114.
[21] [21] LU Y, ZHAO C Z, YUAN H, et al. Critical current density in solid-state lithium metal batteries: Mechanism, influences, and strategies[J]. Adv Funct Mater, 2021, 31(18): 2009925.
[22] [22] SARKAR S, THANGADURAI V. Critical current densities for high-performance all-solid-state Li-metal batteries: Fundamentals, mechanisms, interfaces, materials, and applications[J]. ACS Energy Lett, 2022, 7(4): 1492–1527.
[23] [23] YOON K, LEE S, OH K, et al. Challenges and strategies towards practically feasible solid-state lithium metal batteries[J]. Adv Mater, 2022, 34(4): e2104666.
[24] [24] CHAZALVIEL J. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Phys Rev A, 1990, 42(12): 7355–7367.
[25] [25] ROSSO M, GOBRON T, BRISSOT C, et al. Onset of dendritic growth in lithium/polymer cells[J]. J Power Sources, 2001, 97: 804–806.
[26] [26] STOLZ L, HOMANN G, WINTER M, et al. The Sand equation and its enormous practical relevance for solid-state lithium metal batteries[J]. Mater Today, 2021, 44: 9–14.
[27] [27] BOYLE D T, LI Y Z, PEI A, et al. Resolving current-dependent regimes of electroplating mechanisms for fast charging lithium metal anodes[J]. Nano Lett, 2022, 22(20): 8224–8232.
[28] [28] MISTRY A, FEAR C, CARTER R, et al. Electrolyte confinement alters lithium electrodeposition[J]. ACS Energy Lett, 2019, 4(1): 156–162.
[29] [29] CHANG H J, ILOTT A J, TREASE N M, et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI[J]. J Am Chem Soc, 2015, 137(48): 15209–15216.
[30] [30] BAI P, LI J, BRUSHETT F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy Environ Sci, 2016, 9(10): 3221–3229.
[31] [31] BAI P, GUO J Z, WANG M, et al. Interactions between lithium growths and nanoporous ceramic separators[J]. Joule, 2018, 2(11): 2434–2449.
[32] [32] LEE Y, MA B Y, BAI P. Concentration polarization and metal dendrite initiation in isolated electrolyte microchannels[J]. Energy Environ Sci, 2020, 13(10): 3504–3513.
[33] [33] XIAO J. How lithium dendrites form in liquid batteries[J]. Science, 2019, 366(6464): 426–427.
[34] [34] WANG A P, KADAM S, LI H, et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. NPJ Comput Mater, 2018, 4(1): 15.
[35] [35] PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems: The solid electrolyte interphase model[J]. J Electrochem Soc, 126(12): 2047–2051.
[36] [36] PELED E, GOLODNITSKY D, ARDEL G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. J Electrochem Soc, 144(8): L208–L210.
[37] [37] AURBACH D, MARKOVSKY B, LEVI M D, et al. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries[J]. J Power Sources, 1999, 81: 95–111.
[38] [38] CRESCE A V, RUSSELL S M, BAKER D R, et al.In situand quantitative characterization of solid electrolyte interphases[J]. Nano Lett, 2014, 14(3): 1405–1412.
[39] [39] LI Y Z, HUANG W, LI Y B, et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy[J]. Joule, 2018, 2(10): 2167–2177.
[40] [40] ZHANG X Q, CHENG X B, CHEN X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Adv Funct Mater, 2017, 27(10): 1605989.
[41] [41] LI W Y, YAO H B, YAN K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nat Commun, 2015, 6(1): 7436.
[42] [42] ZHAO Q, LU Y Y, ZHU Z Q, et al. Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode[J]. Nano Lett, 2015, 15(9): 5982–5987.
[43] [43] GUO J, WEN Z Y, WU M F, et al. Vinylene carbonate–LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode[J]. Electrochem Commun, 2015, 51: 59–63.
[44] [44] SHI F F, PEI A, VAILIONIS A, et al. Strong texturing of lithium metal in batteries[J]. Proc Natl Acad Sci USA, 2017, 114(46): 12138–12143.
[45] [45] ZHENG J M, ENGELHARD M H, MEI D H, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nat Energy, 2017, 2(3): 17012.
[46] [46] LIU Y Y, LIN D C, LI Y Z, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode[J]. Nat Commun, 2018, 9(1): 3656.
[47] [47] LIU J J, HAO W, FANG M M, et al. Screening of F-containing electrolyte additives and clarifying their decomposition routes for stable Li metal anodes[J]. Nat Commun, 2024, 15(1): 9356.
[48] [48] KOCH S L, MORGAN B J, PASSERINI S, et al. Density functional theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes[J]. J Power Sources, 2015, 296: 150–161.
[49] [49] ZHAO Q, STALIN S, ARCHER L A. Stabilizing metal battery anodes through the design of solid electrolyte interphases[J]. Joule, 2021, 5(5): 1119–1142.
[50] [50] CHEN L, CONNELL J G, NIE A M, et al. Lithium metal protected by atomic layer deposition metal oxide for high performance anodes[J]. J Mater Chem A, 2017, 5(24): 12297–12309.
[51] [51] SUN Y P, ZHAO Y, WANG J W, et al. A novel organic “polyurea” thin film for ultralong-life lithium-metal anodesviamolecular-layer deposition[J]. Adv Mater, 2019, 31(4): 1806541.
[52] [52] LIU Y J, TAO X Y, WANG Y, et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries[J]. Science, 2022, 375(6582): 739–745.
[53] [53] TU S B, ZHANG B, ZHANG Y, et al. Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase[J]. Nat Energy, 2023, 8(12): 1365–1374.
[54] [54] DING F, XU W, GRAFF G L, et al. Dendrite-free lithium depositionviaself-healing electrostatic shield mechanism[J]. J Am Chem Soc, 2013, 135(11): 4450–4456.
[55] [55] LIU W, LIN D C, PEI A, et al. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement[J]. J Am Chem Soc, 2016, 138(47): 15443–15450.
[56] [56] ZHANG S Q, LI R H, HU N, et al. Tackling realistic Li+ flux for high-energy lithium metal batteries[J]. Nat Commun, 2022, 13(1): 5431.
[57] [57] QIAN J F, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode[J]. Nat Commun, 2015, 6(1): 6362.
[58] [58] WANG J H, YAMADA Y, SODEYAMA K, et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery[J]. Nat Commun, 2016, 7(1): 12032.
[59] [59] FAN X L, CHEN L, JI X, et al. Highly fluorinated interphases enable high-voltage Li-metal batteries[J]. Chem, 2018, 4(1): 174–185.
[60] [60] CHEN Y W, LI M H, LIU Y, et al. Origin of dendrite-free lithium deposition in concentrated electrolytes[J]. Nat Commun, 2023, 14(1): 2655.
[61] [61] TAN J, MATZ J, DONG P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Adv Energy Mater, 2021, 11(16): 2100046.
[62] [62] ZHANG Q L, PAN J, LU P, et al. Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries[J]. Nano Lett, 2016, 16(3): 2011–2016.
[63] [63] REN X D, CHEN S R, LEE H, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries[J]. Chem, 2018, 4(8): 1877–1892.
[64] [64] REN X D, ZOU L F, JIAO S H, et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries[J]. ACS Energy Lett, 2019, 4(4): 896–902.
[65] [65] CHEN S R, ZHENG J M, MEI D H, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Adv Mater, 2018, 30(21): e1706102.
[66] [66] CHEN S R, ZHENG J M, YU L, et al. High-efficiency lithium metal batteries with fire-retardant electrolytes[J]. Joule, 2018, 2(8): 1548–1558.
[67] [67] CAO X, REN X D, ZOU L F, et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization[J]. Nat Energy, 2019, 4(9): 796–805.
[68] [68] FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nat Energy, 2019, 4(10): 882–890.
[69] [69] ZHANG S Q, LI R H, DENG T, et al. Oscillatory solvation chemistry for a 500 W·h·kg−1 Li-metal pouch cell[J]. Nat Energy, 2024, 9(10): 1285–1296.
[70] [70] HOLOUBEK J, LIU H D, WU Z H, et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nat Energy, 2021, 6(3): 303–313.
[71] [71] YU Z A, WANG H S, KONG X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries[J]. Nat Energy, 2020, 5(7): 526–533.
[72] [72] YU Z A, RUDNICKI P E, ZHANG Z W, et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes[J]. Nat Energy, 2022, 7(1): 94–106.
[73] [73] LU D, LI R H, RAHMAN M M, et al. Ligand-channel-enabled ultrafast Li-ion conduction[J]. Nature, 2024, 627(8002): 101–107.
[74] [74] KIM S C, WANG J Y, XU R, et al. High-entropy electrolytes for practical lithium metal batteries[J]. Nat Energy, 2023, 8(8): 814–826.
[75] [75] MA B C, ZHANG H K, LI R H, et al. Molecular-docking electrolytes enable high-voltage lithium battery chemistries[J]. Nat Chem, 2024, 16(9): 1427–1435.
[76] [76] WAN H L, XU J J, WANG C S. Designing electrolytes and interphases for high-energy lithium batteries[J]. Nat Rev Chem, 2024, 8(1): 30–44.
[77] [77] BANERJEE A, WANG X F, FANG C C, et al. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes[J]. Chem Rev, 2020, 120(14): 6878–6933.
[78] [78] SUN J R, ZHANG S, LI J D, et al. Robust transport: An artificial solid electrolyte interphase design for anode-free lithium-metal batteries[J]. Adv Mater, 2023, 35(20): e2209404.
[79] [79] FAN X L, JI X, HAN F D, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery[J]. Sci Adv, 2018, 4(12): eaau9245.
[80] [80] JI X, HOU S, WANG P F, et al. Solid-state electrolyte design for lithium dendrite suppression[J]. Adv Mater, 2020, 32(46): e2002741.
[81] [81] MA B C, LI R H, ZHU H T, et al. Stable oxyhalide-nitride fast ionic conductors for all-solid-state Li metal batteries[J]. Adv Mater, 2024, 36(30): 2402324.
[82] [82] YE L H, LI X. A dynamic stability design strategy for lithium metal solid state batteries[J]. Nature, 2021, 593(7858): 218–222.
[83] [83] WAN H L, WANG Z Y, ZHANG W R, et al. Interface design for all-solid-state lithium batteries[J]. Nature, 2023, 623(7988): 739–744.
[84] [84] KASEMCHAINAN J, ZEKOLL S, SPENCER JOLLY D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nat Mater, 2019, 18(10): 1105–1111.
[85] [85] JUN K, CHEN Y, WEI G, et al. Diffusion mechanisms of fast lithium-ion conductors[J]. Nat Rev Mater, 2024, 9(12): 887–905.
[86] [86] JUN K, SUN Y Z, XIAO Y H, et al. Lithium superionic conductors with corner-sharing frameworks[J]. Nat Mater, 2022, 21(8): 924–931.
[87] [87] YIN Y C, YANG J T, LUO J D, et al. A LaCl3-based lithium superionic conductor compatible with lithium metal[J]. Nature, 2023, 616(7955): 77–83.
[88] [88] YU S, NOH J, KIM B, et al. Design of a trigonal halide superionic conductor by regulating cation order-disorder[J]. Science, 2023, 382(6670): 573–579.
[89] [89] ZENG Y, OUYANG B, LIU J, et al. High-entropy mechanism to boost ionic conductivity[J]. Science, 2022, 378(6626): 1320–1324.
[90] [90] LI Y X, SONG S B, KIM H, et al. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381(6653): 50–53.
[91] [91] WANG C H, DENG T, FAN X L, et al. Identifying soft breakdown in all-solid-state lithium battery[J]. Joule, 2022, 6(8): 1770–1781.
[92] [92] COUNIHAN M J, CHAVAN K S, BARAI P, et al. The phantom menace of dynamic soft-shorts in solid-state battery research[J]. Joule, 2024, 8(1): 64–90.
[93] [93] XIAO Y H, WANG Y, BO S H, et al. Understanding interface stability in solid-state batteries[J]. Nat Rev Mater, 2020, 5(2): 105–126.
[94] [94] YAN W L, MU Z L, WANG Z X, et al. Hard-carbon-stabilized Li–Si anodes for high-performance all-solid-state Li-ion batteries[J]. Nat Energy, 2023, 8(8): 800–813.
[95] [95] RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chem Mater, 2016, 28(1): 266–273.
[96] [96] WENZEL S, LEICHTWEISS T, KRGER D, et al. Interphase formation on lithium solid electrolytes: Anin situapproach to study interfacial reactions by photoelectron spectroscopy[J]. Solid State Ion, 2015, 278: 98–105.
[97] [97] WANG S, BAI Q, NOLAN A M, et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angew Chem Int Ed, 2019, 58(24): 8039–8043.
[98] [98] HAN F D, ZHU Y Z, HE X F, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Adv Energy Mater, 2016, 6(8): 1501590.
[99] [99] MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2(4): 16103.
[100] [100] SHI P R, MA J B, LIU M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nat Nanotechnol, 2023, 18(6): 602–610.
[101] [101] HUO H Y, JANEK J. Solid-state batteries: From ‘all-solid’ to ‘almost-solid’[J]. Natl Sci Rev, 2023, 10(6): nwad098.
[102] [102] BUSCHE M R, DROSSEL T, LEICHTWEISS T, et al. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts[J]. Nat Chem, 2016, 8(5): 426–434.
[103] [103] YU X W, MANTHIRAM A. Electrode-electrolyte interfaces in lithium-sulfur batteries with liquid or inorganic solid electrolytes[J]. Acc Chem Res, 2017, 50(11): 2653–2660.
[104] [104] DAI T, WU S Y, LU Y X, et al. Inorganic glass electrolytes with polymer-like viscoelasticity[J]. Nat Energy, 2023, 8: 1221–1228
Get Citation
Copy Citation Text
ZHU Haotian, ZHANG Shuoqing, ZHANG Haikuo, MA Baochen, CHEN Long, LI Ruhong, FAN Xiulin. Liquid and Solid-State Li Electrolyte Anode Interface Properties Comparison and Enhancement Strategies[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1714
Category:
Received: Dec. 26, 2024
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: FAN Xiulin (xlfan@zju.edu.cn)