International Journal of Extreme Manufacturing, Volume. 7, Issue 1, 12007(2025)
Advances of triboelectric and piezoelectric nanogenerators toward continuous monitoring and multimodal applications in the new era
[1] [1] Yang G Z et al 2018 The grand challenges of Science Robot. Sci. Robot.3 eaar7650
[2] [2] Barreiros J A, Xu A, Pugach S, Iyengar N, Troxell G, Cornwell A, Hong S, Selman B and Shepherd R F 2022 Haptic perception using optoelectronic robotic flesh for embodied artificially intelligent agents Sci. Robot.7 eabi6745
[3] [3] Duan S S, Shi Q F, Hong J L, Zhu D, Lin Y C, Li Y H, Lei W, Lee C and Wu J 2023 Water-modulated biomimetic hyper-attribute-gel electronic skin for robotics and skin-attachable wearables ACS Nano17 1355–71
[4] [4] Ates H C, Nguyen P Q, Gonzalez-Macia L, Morales-Narvez E, Gder F, Collins J J and Dincer C 2022 End-to-end design of wearable sensors Nat. Rev. Mater.7 887–907
[5] [5] Gao M Y, Wang P, Jiang L L, Wang B W, Yao Y, Liu S, Chu D W, Cheng W L and Lu Y R 2021 Power generation for wearable systems Energy Environ. Sci.14 2114–57
[6] [6] Duan S S et al 2023 Bioinspired young's modulus-hierarchical E-skin with decoupling multimodality and neuromorphic encoding outputs to biosystems Adv. Sci.10 2304121
[7] [7] Zhu M L, Shi Q F, He T Y Y, Yi Z R, Ma Y M, Yang B, Chen T and Lee C 2019 Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring ACS Nano13 1940–52
[8] [8] Parrilla M and De Wael K 2021 Wearable self-powered electrochemical devices for continuous health management Adv. Funct. Mater.31 2107042
[9] [9] Madhvapathy S R, Wang J J, Wang H L, Patel M, Chang A, Zheng X, Huang Y G, Zhang Z J, Gallon L and Rogers J A 2023 Implantable bioelectronic systems for early detection of kidney transplant rejection Science381 1105–12
[10] [10] Jin T et al 2020 Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications Nat. Commun.11 5381
[11] [11] Peng K, Huang H L, Bilal M and Xu X L 2023 Distributed incentives for intelligent offloading and resource allocation in digital twin driven smart industry IEEE Trans. Ind. Inf.19 3133–43
[12] [12] Wu J, Li Y H, Duan S S, Wang Z H, Jing X, Lin Y C, Zhu D, Lei W, Shi Q F and Tao L 2023 Bioinspired stretchable MXene deformation-insensitive hydrogel temperature sensors for plant and skin electronics Research6 0106
[13] [13] Min J H et al 2023 An autonomous wearable biosensor powered by a perovskite solar cell Nat. Electron.6 630–41
[14] [14] Zeng R et al 2023 All-polymer organic solar cells with nano-to-micron hierarchical morphology and large light receiving angle Nat. Commun.14 4148
[15] [15] Becker C, Bao B, Karnaushenko D D, Bandari V K, Rivkin B, Li Z, Faghih M, Karnaushenko D and Schmidt O G 2022 A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays Nat. Commun.13 2121
[16] [16] Zhang Q H, Deng K F, Wilkens L, Reith H and Nielsch K 2022 Micro-thermoelectric devices Nat. Electron.5 333–47
[17] [17] Wang Z L and Wang A C 2019 On the origin of contact-electrification Mater. Today30 34–51
[18] [18] Han M D et al 2019 Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants Nat. Electron.2 26–35
[19] [19] Choi D et al 2023 Recent advances in triboelectric nanogenerators: from technological progress to commercial applications ACS Nano17 11087–219
[20] [20] Yoon H J and Kim S W 2020 Nanogenerators to power implantable medical systems Joule4 1398–407
[21] [21] Sun Z D, Zhu M L, Shan X C and Lee C 2022 Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions Nat. Commun.13 5224
[22] [22] Tang W, Sun Q J and Wang Z L 2023 Self-powered sensing in wearable electronics—a paradigm shift technology Chem. Rev.123 12105–34
[23] [23] Yu J R, Yang X X and Sun Q J 2020 Piezo/tribotronics toward smart flexible sensors Adv. Intell. Syst.2 1900175
[24] [24] Dibner B 1954 Ten founding fathers of the electrical science: II. Otto von Guericke: and the first electric machine Electr. Eng.73 396–7
[25] [25] Furfari F A 2005 A history of the Van de Graaff generator IEEE Ind. Appl. Mag.11 10–14
[26] [26] Fan F R, Tian Z Q and Wang Z L 2012 Flexible triboelectric generator Nano Energy1 328–34
[27] [27] Xu C et al 2018 On the electron-transfer mechanism in the contact-electrification effect Adv. Mater.30 1706790
[28] [28] Diaz A F, Wollmann D and Dreblow D 1991 Contact electrification: ion transfer to metals and polymers Chem. Mater.3 997–9
[29] [29] Zhang R Y, Hummelgrd M, rtegren J, Olsen M, Andersson H, Yang Y, Zheng H W and Olin H 2021 The triboelectricity of the human body Nano Energy86 106041
[30] [30] Yan D L, Ye J, Zhou Y H, Lei X X, Deng B and Xu W L 2023 Research progress of fabrics with different geometric structures for triboelectric nanogenerators in flexible and wearable electronics Adv. Fiber Mater.5 1852–78
[31] [31] Niu Z X, Wang Q X, Lu J Q, Hu Y, Huang J Q, Zhao W, Liu Y J, Long Y Z and Han G P 2024 Electrospun cellulose nanocrystals reinforced flexible sensing paper for triboelectric energy harvesting and dynamic self-powered tactile perception Small20 2307810
[32] [32] Lin Z H, Xie Y N, Yang Y, Wang S H, Zhu G and Wang Z L 2013 Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials ACS Nano7 4554–60
[33] [33] Liu C R, Li J Q, Che L F, Chen S Q, Wang Z K and Zhou X F 2017 Toward large-scale fabrication of triboelectric nanogenerator (TENG) with silk-fibroin patches film via spray-coating process Nano Energy41 359–66
[34] [34] Wang Q, Chen M F, Li W, Li Z, Chen Y T and Zhai Y M 2017 Size effect on the output of a miniaturized triboelectric nanogenerator based on superimposed electrode layers Nano Energy41 128–38
[35] [35] Khandelwal G and Dahiya R 2022 Self-powered active sensing based on triboelectric generators Adv. Mater.34 2200724
[36] [36] Wu C S, Wang A C, Ding W B, Guo H Y and Wang Z L 2019 Triboelectric nanogenerator: a foundation of the energy for the new era Adv. Energy Mater.9 1802906
[37] [37] Kwak S S, Kim S M, Ryu H, Kim J, Khan U, Yoon H J, Jeong Y H and Kim S W 2019 Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators Energy Environ. Sci.12 3156–63
[38] [38] Wang J Y, Ding W B, Pan L, Wu C S, Yu H, Yang L J, Liao R J and Wang Z L 2018 Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator ACS Nano12 3954–63
[39] [39] Jiang T, Tang W, Chen X Y, Han C B, Lin L, Zi Y L and Wang Z L 2016 Figures-of-merit for rolling-friction-based triboelectric nanogenerators Adv. Mater. Technol.1 1600017
[40] [40] Cheng T H, Shao J J and Wang Z L 2023 Triboelectric nanogenerators Nat. Rev. Meth. Primers3 39
[41] [41] Cao Y L, Guo Y B, Chen Z X, Yang W F, Li K R, He X Y and Li J M 2022 Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection Nano Energy92 106689
[42] [42] Akram W, Chen Q, Xia G B and Fang J 2023 A review of single electrode triboelectric nanogenerators Nano Energy106 108043
[43] [43] Zhao C et al 2022 Highly-stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures Nano Energy94 106926
[44] [44] Guo R et al 2022 Deep learning assisted body area triboelectric hydrogel sensor network for infant care Adv. Funct. Mater.32 2204803
[45] [45] Dong B W, Shi Q F, He T Y Y, Zhu S Y, Zhang Z X, Sun Z D, Ma Y M, Kwong D L and Lee C 2020 Wearable triboelectric/aluminum nitride nano-energy-nano-system with self-sustainable photonic modulation and continuous force sensing Adv. Sci.7 1903636
[46] [46] Niu S M, Wang S H, Lin L, Liu Y, Zhou Y S, Hu Y F and Wang Z L 2013 Theoretical study of contact-mode triboelectric nanogenerators as an effective power source Energy Environ. Sci.6 3576–83
[47] [47] Kim D W, Lee J H, Kim J K and Jeong U 2020 Material aspects of triboelectric energy generation and sensors NPG Asia Mater.12 6
[48] [48] An J, Chen P F, Li C Y, Li F M, Jiang T and Wang Z L 2022 Methods for correctly characterizing the output performance of nanogenerators Nano Energy93 106884
[49] [49] Bairagi S, Shahid U I, Kumar C, Babu A, Aliyana A K, Stylios G, Pillai S C and Mulvihill D M 2023 Wearable nanocomposite textile-based piezoelectric and triboelectric nanogenerators: progress and perspectives Nano Energy118 108962
[50] [50] Liu J Y, Wen Z, Lei H, Gao Z Q and Sun X H 2022 A liquid-solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa-1 Nanomicro Lett.14 88
[51] [51] Xu Y L, Bai Z Q and Xu G B 2023 Constructing high-efficiency stretchable-breathable triboelectric fabric for biomechanical energy harvesting and intelligent sensing Nano Energy108 108224
[52] [52] Bhatta T, Pradhan G B, Shrestha K, Jeong S H, Zhang S P, Kim H S and Park J Y 2023 All elastomeric pillars-based triboelectric vibration sensor for self-powered broad range machinery condition monitoring Nano Energy117 108929
[53] [53] Wei X L, Wang B C, Cao X L, Zhou H L, Wu Z Y and Wang Z L 2023 Dual-sensory fusion self-powered triboelectric taste-sensing system towards effective and low-cost liquid identification Nat. Food4 721–32
[54] [54] Qin Y, Mo J L, Liu Y H, Zhang S, Wang J L, Fu Q, Wang S F and Nie S X 2022 Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels Adv. Funct. Mater.32 2201846
[55] [55] Wang H, Wu H, Hasan D, He T Y Y, Shi Q F and Lee C 2017 Self-powered dual-mode amenity sensor based on the water-air triboelectric nanogenerator ACS Nano11 10337–46
[56] [56] Nguyen V and Yang R S 2013 Effect of humidity and pressure on the triboelectric nanogenerator Nano Energy2 604–8
[57] [57] Nmeth E, Albrecht V, Schubert G and Simon F 2003 Polymer tribo-electric charging: dependence on thermodynamic surface properties and relative humidity J. Electrostat.58 3–16
[58] [58] Chang T H, Peng Y W, Chen C H, Chang T W, Wu J M, Hwang J C, Gan J Y and Lin Z H 2016 Protein-based contact electrification and its uses for mechanical energy harvesting and humidity detecting Nano Energy21 238–46
[59] [59] Fan F R, Tang W and Wang Z L 2016 Flexible nanogenerators for energy harvesting and self-powered electronics Adv. Mater.28 4283–305
[60] [60] Park D Y, Joe D J, Kim D H, Park H, Han J H, Jeong C K, Park H, Park J G, Joung B and Lee K J 2017 Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors Adv. Mater.29 1702308
[61] [61] Modaresinezhad E and Darbari S 2016 Realization of a room-temperature/self-powered humidity sensor, based on ZnO nanosheets Sens. Actuators B 237 358–66
[62] [62] Dong L, Jin C R, Closson A B, Trase I, Richards H C, Chen Z and Zhang J X J 2020 Cardiac energy harvesting and sensing based on piezoelectric and triboelectric designs Nano Energy76 105076
[63] [63] Dong K, Peng X and Wang Z L 2020 Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence Adv. Mater.32 1902549
[64] [64] Gao Z Y, Zhou J, Gu Y D, Fei P, Hao Y, Bao G and Wang Z L 2009 Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor J. Appl. Phys.105 113707
[65] [65] Wang R C, Lin Y C, Chen H C and Lin W Y 2021 Energy harvesting from g-C3N4 piezoelectric nanogenerators Nano Energy83 105743
[66] [66] Filippin A N, Sanchez-Valencia J R, Garcia-Casas X, Lopez-Flores V, Macias-Montero M, Frutos F, Barranco A and Borras A 2019 3D core-multishell piezoelectric nanogenerators Nano Energy58 476–83
[67] [67] Ma B B, Cheng L, Bai S, Jia X F, Ma J, Zhao J L, Wang L F and Qin Y 2023 3D spirally coiled piezoelectric nanogenerator for large impact energy harvesting Nano Energy111 108412
[68] [68] Jurado U T, Pu S H and White N M 2020 Grid of hybrid nanogenerators for improving ocean wave impact energy harvesting self-powered applications Nano Energy72 104701
[69] [69] Wu J G, Shi H D, Zhao T L, Yu Y and Dong S X 2016 High-temperature BiScO3-PbTiO3 piezoelectric vibration energy harvester Adv. Funct. Mater.26 7186–94
[70] [70] Gao X Y, Wu J G, Yu Y, Chu Z Q, Shi H D and Dong S X 2018 Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN-PZT for vibration energy harvesting Adv. Funct. Mater.28 1706895
[71] [71] Cao X L, Xiong Y, Sun J, Zhu X X, Sun Q J and Wang Z L 2021 Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence Adv. Funct. Mater.31 2102983
[72] [72] Lee S, Bae S H, Lin L, Yang Y, Park C, Kim S W, Cha S N, Kim H, Park Y J and Wang Z L 2013 Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor Adv. Funct. Mater.23 2445–9
[73] [73] Zhu M L, Yi Z R, Yang B and Lee C 2021 Making use of nanoenergy from human—nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems Nano Today36 101016
[74] [74] Wen Z, Shen Q Q and Sun X H 2017 Nanogenerators for self-powered gas sensing Nanomicro Lett.9 45
[75] [75] Chen C X, Xie G Z, Dai J, Li W X, Cai Y L, Li J, Zhang Q P, Tai H L, Jiang Y D and Su Y J 2023 Integrated core-shell structured smart textiles for active NO2 concentration and pressure monitoring Nano Energy116 108788
[76] [76] Fu Y M, He H X, Zhao T M, Dai Y T, Han W X, Ma J, Xing L L, Zhang Y and Xue X Y 2018 A self-powered breath analyzer based on PANI/PVDF piezo-gas-sensing arrays for potential diagnostics application Nanomicro Lett.10 76
[77] [77] Xue X Y, Nie Y X, He B, Xing L L, Zhang Y and Wang Z L 2013 Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor Nanotechnology24 225501
[78] [78] Jin L M, Tao J, Bao R R, Sun L and Pan C F 2017 Self-powered real-time movement monitoring sensor using triboelectric nanogenerator technology Sci. Rep.7 10521
[79] [79] Yin X, Liu D, Zhou L L, Li X Y, Xu G Q, Liu L, Li S X, Zhang C G, Wang J and Wang Z L 2020 A motion vector sensor via direct-current triboelectric nanogenerator Adv. Funct. Mater.30 2002547
[80] [80] Sun Q J, Seung W, Kim B J, Seo S, Kim S W and Cho J H 2015 Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors Adv. Mater.27 3411–7
[81] [81] Dong B W et al 2020 Wearable triboelectric–human–machine interface (THMI) using robust nanophotonic readout ACS Nano14 8915–30
[82] [82] Dong B W, Zhang Z X, Shi Q F, Wei J X, Ma Y M, Xiao Z A and Lee C 2022 Biometrics-protected optical communication enabled by deep learning–enhanced triboelectric/photonic synergistic interface Sci. Adv.8 eabl9874
[83] [83] Sim M, Jang J, Shin K, Kim D, Kim J, Kwon H J, Kang H and Jang J E 2023 Tactile sensor structure optimized for sliding motion with high resolution recording of surface topography IEEE Electron. Device Lett.44 1184–7
[84] [84] Zhang X, Li Z K, Du W W, Zhao Y L, Wang W, Pang L L, Chen L, Yu A F and Zhai J Y 2022 Self-powered triboelectric-mechanoluminescent electronic skin for detecting and differentiating multiple mechanical stimuli Nano Energy96 107115
[85] [85] Pu X J, Guo H Y, Tang Q, Chen J, Feng L, Liu G L, Wang X, Xi Y, Hu C G and Wang Z L 2018 Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor Nano Energy54 453–60
[86] [86] Li C Y, Liu D, Xu C Q, Wang Z M, Shu S, Sun Z R, Tang W and Wang Z L 2021 Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel Nat. Commun.12 2950
[87] [87] Gao S, He T Y Y, Zhang Z X, Ao H R, Jiang H Y and Lee C 2021 A motion capturing and energy harvesting hybridized lower-limb system for rehabilitation and sports applications Adv. Sci.8 2101834
[88] [88] Li S X, Zhao Z H, Liu D, An J, Gao Y K, Zhou L L, Li Y H, Cui S N, Wang J and Wang Z L 2022 A self-powered dual-type signal vector sensor for smart robotics and automatic vehicles Adv. Mater.34 2110363
[89] [89] Zhu M L, Sun Z D, Chen T and Lee C 2021 Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system Nat. Commun.12 2692
[90] [90] Cui X J, Zhao T C, Yang S, Xie G, Zhang Z Y, Zhang Y X, Sang S B, Lin Z H, Zhang W D and Zhang H L 2020 A spongy electrode-brush-structured dual-mode triboelectric nanogenerator for harvesting mechanical energy and self-powered trajectory tracking Nano Energy78 105381
[91] [91] Yang S, Zhang H L and Sang S B 2020 An in-plane sliding triboelectric nanogenerator with a multielectrode array for self-powered dynamic addressing and trajectory tracking Energy Technol.8 2000155
[92] [92] Shi S, Jiang Y W, Xu Q H, Zhang J H, Zhang Y M, Li J H, Xie Y N and Cao Z P 2022 A self-powered triboelectric multi-information motion monitoring sensor and its application in wireless real-time control Nano Energy97 107150
[93] [93] Zhu J X, Wang H, Zhang Z X, Ren Z H, Shi Q F, Liu W X and Lee C 2020 Continuous direct current by charge transportation for next-generation IoT and real-time virtual reality applications Nano Energy73 104760
[94] [94] Li G, Wu S Y, Sha Z, Zhao L Y, Chu D W, Wang C H and Peng S H 2023 A triboelectric nanogenerator powered piezoresistive strain sensing technique insensitive to output variations Nano Energy108 108185
[95] [95] Zhao K, Gu G Q, Zhang Y N, Zhang B, Yang F, Zhao L, Zheng M L, Cheng G and Du Z L 2018 The self-powered CO2 gas sensor based on gas discharge induced by triboelectric nanogenerator Nano Energy53 898–905
[96] [96] Wang J Q, Bao G W, Xie S X and Chen X W 2023 A paradigm-shift self-powered optical sensing system enabled by the rotation driven instantaneous discharging triboelectric nanogenerator (RDID-TENG) Nano Energy115 108732
[97] [97] Liu S T, Wang H, He T Y Y, Dong S R and Lee C 2020 Switchable textile-triboelectric nanogenerators (S-TENGs) for continuous profile sensing application without environmental interferences Nano Energy69 104462
[98] [98] Wang Z M, An J, Nie J H, Luo J J, Shao J J, Jiang T, Chen B D, Tang W and Wang Z L 2020 A self-powered angle sensor at nanoradian-resolution for robotic arms and personalized medicare Adv. Mater.32 2001466
[99] [99] Yi F, Lin L, Niu S M, Yang J, Wu W Z, Wang S H, Liao Q L, Zhang Y and Wang Z L 2014 Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor Adv. Funct. Mater.24 7488–94
[100] [100] Chen X Y, Iwamoto M, Shi Z M, Zhang L M and Wang Z L 2015 Self-powered trace memorization by conjunction of contact-electrification and ferroelectricity Adv. Funct. Mater.25 739–47
[101] [101] Huang T, Zhang Y J, He P, Wang G, Xia X X, Ding G Q and Tao T H 2020 “Self-matched” tribo/piezoelectric nanogenerators using vapor-induced phase-separated poly(vinylidene fluoride) and recombinant spider silk Adv. Mater.32 1907336
[102] [102] Wang L et al 2023 Wearable bending wireless sensing with autonomous wake-up by piezoelectric and triboelectric hybrid nanogenerator Nano Energy112 108504
[103] [103] Tang G, Shi Q F, Zhang Z X, He T Y Y, Sun Z D and Lee C 2021 Hybridized wearable patch as a multi-parameter and multi-functional human-machine interface Nano Energy81 105582
[104] [104] Zhu M M, Lou M N, Yu J Y, Li Z L and Ding B 2020 Energy autonomous hybrid electronic skin with multi-modal sensing capabilities Nano Energy78 105208
[105] [105] Sun C H, Shi Q F, Hasan D, Yazici M S, Zhu M L, Ma Y M, Dong B W, Liu Y F and Lee C 2019 Self-powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors Nano Energy58 612–23
[106] [106] Yu J B, Hou X J, Cui M, Zhang S N, He J, Geng W P, Mu J L and Chou X J 2019 Highly skin-conformal wearable tactile sensor based on piezoelectric-enhanced triboelectric nanogenerator Nano Energy64 103923
[107] [107] Han J, Xu N, Yu J R, Wang Y F, Xiong Y, Wei Y C, Wang Z L and Sun Q J 2022 Energy autonomous paper modules and functional circuits Energy Environ. Sci.15 5069–81
[108] [108] Xia K Q and Xu Z W 2020 Double-piezoelectric-layer-enhanced triboelectric nanogenerator for bio-mechanical energy harvesting and hot airflow monitoring Smart Mater. Struct.29 095016
[109] [109] Qiu Y et al 2020 Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions Nano Energy78 105337
[110] [110] Lee G, Son J H, Lee S, Kim S W, Kim D, Nguyen N N, Lee S G and Cho K 2021 Fingerpad-inspired multimodal electronic skin for material discrimination and texture recognition Adv. Sci.8 2002606
[111] [111] Wang Z, Liu Z R, Zhao G R, Zhang Z C, Zhao X Y, Wan X Y, Zhang Y L, Wang Z L and Li L L 2022 Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors ACS Nano16 1661–70
[112] [112] Wei X, Li H, Yue W J, Gao S, Chen Z X, Li Y and Shen G Z 2022 A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin Matter5 1481–501
[113] [113] Huang T C, Long Y, Dong Z L, Hua Q L, Niu J N, Dai X H, Wang J W, Xiao J F, Zhai J Y and Hu W G 2022 Ultralight, elastic, hybrid aerogel for flexible/wearable piezoresistive sensor and solid–solid/gas–solid coupled triboelectric nanogenerator Adv. Sci.9 2204519
[114] [114] Wang Y, Wu H T, Xu L, Zhang H N, Yang Y and Wang Z L 2020 Hierarchically patterned self-powered sensors for multifunctional tactile sensing Sci. Adv.6 eabb9083
[115] [115] Dai X Y, Wu Y H, Liang Q H, Yang J K, Huang L B, Kong J and Hao J H 2023 Soft robotic-adapted multimodal sensors derived from entirely intrinsic self-healing and stretchable cross-linked networks Adv. Funct. Mater.33 2304415
[116] [116] Chen Y F, Lei H, Gao Z Q, Liu J Y, Zhang F J, Wen Z and Sun X H 2022 Energy autonomous electronic skin with direct temperature-pressure perception Nano Energy98 107273
[117] [117] Shin Y E, Park Y J, Ghosh S K, Lee Y, Park J and Ko H 2022 Ultrasensitive multimodal tactile sensors with skin-inspired microstructures through localized ferroelectric polarization Adv. Sci.9 2105423
[118] [118] Shin Y E, Sohn S D, Han H J, Park Y, Shin H J and Ko H 2020 Self-powered triboelectric/pyroelectric multimodal sensors with enhanced performances and decoupled multiple stimuli Nano Energy72 104671
[119] [119] Sun Z D, Zhu M L, Zhang Z X, Chen Z C, Shi Q F, Shan X C, Yeow R C H and Lee C 2021 Artificial intelligence of things (AIoT) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator Adv. Sci.8 2100230
[120] [120] Zhang J H et al 2022 Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference Nat. Commun.13 5839
[121] [121] Ma X T, Kim E, Zhou J M, Gao J Y, Kim C, Huan X, Kim J T and Shin D M 2023 Self-powered smart skins for multimodal tactile perception based on triboelectric and hygroelectric working principles Nano Energy113 108589
[122] [122] Wang K D et al 2023 A ferromagnetic tribo-cilia enhanced triboelectric-electromagnetic hybrid generator with superior performance in contact-noncontact sliding motion Nano Energy113 108538
[123] [123] Toyabur Rahman M, Sohel Rana S M, Salauddin M, Maharjan P, Bhatta T, Kim H, Cho H and Park J Y 2020 A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting Appl. Energy279 115799
[124] [124] Wang S H, Wang X, Wang Z L and Yang Y 2016 Efficient scavenging of solar and wind energies in a smart city ACS Nano10 5696–700
[125] [125] Wang W J, Tan J, Wang H, Xiao H, Shen R C, Huang B L and Yuan Q 2024 Self-powered and self-recoverable multimodal force sensors based on trap state and interfacial electron transfer Angew. Chem., Int. Ed.63 e202404060
[126] [126] Shen G C, Hu Y L, Li J P, Wen J M and Ma J J 2023 A piezo-triboelectric hybrid nanogenerator based on charge pumping strategy Energy Convers. Manage.292 117368
[127] [127] Lee T, Kim I and Kim D 2021 Flexible hybrid nanogenerator for self-powered weather and healthcare monitoring sensor Adv. Electron. Mater.7 2100785
[128] [128] Li L Z, Wang X L, Hu Y Q, Li Z H, Zhao Z R and Zheng G 2023 The tribo-piezoelectric microscopic coupling mechanism of ferroelectric polymers and the synchronous online monitoring of load distribution/roller speed for intelligent bearings Nano Energy115 108724
[129] [129] Yun J, Park J, Ryoo M, Kitchamsetti N, Goh T S and Kim D 2023 Piezo-triboelectric hybridized nanogenerator embedding MXene based bifunctional conductive filler in polymer matrix for boosting electrical power Nano Energy105 108018
[130] [130] Liu Z et al 2024 A self-powered intracardiac pacemaker in swine model Nat. Commun.15 507
[131] [131] Ouyang H et al 2019 Symbiotic cardiac pacemaker Nat. Commun.10 1821
[132] [132] Wang T L et al 2024 Rehabilitation exercise–driven symbiotic electrical stimulation system accelerating bone regeneration Sci. Adv.10 eadi6799
[133] [133] Shi Q F, Sun Z D, Le X H, Xie J and Lee C 2023 Soft robotic perception system with ultrasonic auto-positioning and multimodal sensory intelligence ACS Nano17 4985–98
[134] [134] Li Y J, Tian Z Y, Gao X Z, Zhao H Y, Li X F, Wang Z L, Yu Z Z and Yang D 2023 All-weather self-powered intelligent traffic monitoring system based on a conjunction of self-healable piezoresistive sensors and triboelectric nanogenerators Adv. Funct. Mater.33 2308845
[135] [135] Xiong Y et al 2023 Scalable spinning, winding, and knitting graphene textile TENG for energy harvesting and human motion recognition Nano Energy107 108137
[136] [136] Sun J Z, Choi H, Cha S, Ahn D, Choi M, Park S, Cho Y, Lee J, Park T E and Park J J 2022 Highly enhanced triboelectric performance from increased dielectric constant induced by ionic and interfacial polarization for chitosan based multi-modal sensing system Adv. Funct. Mater.32 2109139
[137] [137] Mariello M, Fachechi L, Guido F and De Vittorio M 2021 Conformal, ultra-thin skin-contact-actuated hybrid piezo/triboelectric wearable sensor based on AlN and parylene-encapsulated elastomeric blend Adv. Funct. Mater.31 2101047
[138] [138] Yang Y Q, Shi Q F, Zhang Z X, Shan X C, Salam B and Lee C 2023 Robust triboelectric information-mat enhanced by multi-modality deep learning for smart home InfoMat5 e12360
[139] [139] Lin Y C, Duan S S, Zhu D, Li Y H, Wang B H and Wu J 2023 Self-powered and interface-independent tactile sensors based on bilayer single-electrode triboelectric nanogenerators for robotic electronic skin Adv. Intell. Syst.5 2100120
[140] [140] Duan S S, Shi Q F and Wu J 2022 Multimodal sensors and ML-based data fusion for advanced robots Adv. Intell. Syst.4 2200213
[141] [141] Wu T J, Deng H T, Sun Z D, Zhang X R, Lee C and Zhang X S 2023 Intelligent soft robotic fingers with multi-modality perception ability iScience26 107249
[142] [142] Xu J S, Xie Z J, Yue H H, Lu Y F and Yang F 2022 A triboelectric multifunctional sensor based on the controlled buckling structure for motion monitoring and bionic tactile of soft robots Nano Energy104 107845
[143] [143] Wang Y, Duan S S, Liu J C, Zhao F Z, Chen P Z, Shi Q F and Wu J 2023 Highly-sensitive expandable microsphere-based flexible pressure sensor for human–machine interaction J. Micromech. Microeng.33 115009
[144] [144] Duan S S et al 2021 Conductive porous MXene for bionic, wearable, and precise gesture motion sensors Research2021 9861467
[145] [145] Duan S S, Lin Y C, Zhang C Y, Li Y H, Zhu D, Wu J and Lei W 2022 Machine-learned, waterproof MXene fiber-based glove platform for underwater interactivities Nano Energy91 106650
[146] [146] Duan S S et al 2023 Highly durable machine-learned waterproof electronic glove based on low-cost thermal transfer printing for amphibious wearable applications Nano Res.16 5480–9
[147] [147] Zhang H, Zhang D Z, Wang Z H, Xi G S, Mao R Y, Ma Y H, Wang D Y, Tang M C, Xu Z Y and Luan H X 2023 Ultrastretchable, self-healing conductive hydrogel-based triboelectric nanogenerators for human-computer interaction ACS Appl. Mater. Interfaces15 5128–38
[148] [148] Xiong Y et al 2024 Triboelectric in-sensor deep learning for self-powered gesture recognition toward multifunctional rescue tasks Nano Energy124 109465
[149] [149] Guo H, Wan J, Wu H X, Wang H B, Miao L M, Song Y, Chen H T, Han M D and Zhang H X 2020 Self-powered multifunctional electronic skin for a smart anti-counterfeiting signature system ACS Appl. Mater. Interfaces12 22357–64
[150] [150] Zhan T T, Zou H Y, Zhang H F, He P, Liu Z L, Chen J S, He M G, Zhang Y and Wang Z L 2023 Smart liquid-piston based triboelectric nanogenerator sensor for real-time monitoring of fluid status Nano Energy111 108419
[151] [151] Xu Q H et al 2021 A wind vector detecting system based on triboelectric and photoelectric sensors for simultaneously monitoring wind speed and direction Nano Energy89 106382
[152] [152] Ahmed A, Hassan I, Mosa I M, Elsanadidy E, Sharafeldin M, Rusling J F and Ren S Q 2019 An ultra-shapeable, smart sensing platform based on a multimodal ferrofluid-infused surface Adv. Mater.31 1807201
[153] [153] Yu J R, Wang Y F, Qin S S, Gao G Y, Xu C, Wang Z L and Sun Q J 2022 Bioinspired interactive neuromorphic devices Mater. Today60 158–82
[154] [154] Lin X D, Feng Z Y, Xiong Y, Sun W W, Yao W C, Wei Y C, Wang Z L and Sun Q J 2024 Piezotronic neuromorphic devices: principle, manufacture, and applications Int. J. Extrem. Manuf.6 032011
[155] [155] Yu J R, Gao G Y, Huang J R, Yang X X, Han J, Zhang H, Chen Y H, Zhao C L, Sun Q J and Wang Z L 2021 Contact-electrification-activated artificial afferents at femtojoule energy Nat. Commun.12 1581
[156] [156] Liu Y Q, Liu D, Gao C S, Zhang X H, Yu R J, Wang X M, Li E L, Hu Y Y, Guo T L and Chen H P 2022 Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memory-computing Nat. Commun.13 7917
[157] [157] Zhao T M, Fu Y M, He H X, Dong C Y, Zhang L L, Zeng H, Xing L L and Xue X Y 2018 Self-powered gustation electronic skin for mimicking taste buds based on piezoelectric–enzymatic reaction coupling process Nanotechnology29 075501
[158] [158] Cui N Y, Gu L, Lei Y M, Liu J M, Qin Y, Ma X H, Hao Y and Wang Z L 2016 Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator ACS Nano10 6131–8
[159] [159] Firdous I, Fahim M, Wang L Y, Li W J, Zi Y L and Daoud W A 2021 Boosting current output of triboelectric nanogenerator by two orders of magnitude via hindering interfacial charge recombination Nano Energy89 106315
Get Citation
Copy Citation Text
Hong Jianlong, Wei Xiao, Zhang Huiyun, Xiao Yukun, Meng Chongguang, Chen Yuqi, Li Jiahui, Li Ling, Lee Sanghoon, Shi Qiongfeng, Wu Jun. Advances of triboelectric and piezoelectric nanogenerators toward continuous monitoring and multimodal applications in the new era[J]. International Journal of Extreme Manufacturing, 2025, 7(1): 12007
Category: Topical Review
Received: Mar. 4, 2024
Accepted: Apr. 17, 2025
Published Online: Apr. 17, 2025
The Author Email: