Acta Optica Sinica, Volume. 45, Issue 10, 1010001(2025)

Indoor Positioning System Based on Matrix Factorization and Deep Neural Networks

Yiyi Xu1, Lifang Feng1、*, and Zhuo Xue2
Author Affiliations
  • 1School of Computer & Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • 2Synergy Group Holdings International Limited, Ordos 017000, Inner Mongolia , China
  • show less
    Figures & Tables(13)
    Block diagram of indoor positioning system based on matrix factorization and deep neural network
    Schematic diagram of matrix factorization algorithm and deep neural network principle
    Experimental scene diagram
    Partial images of dataset. (a) Dataset image; (b) add interference image; (c) image of verification set and test set
    Cumulative error chart of positioning method
    Train and validation loss of learning model. (a) 10 epochs; (b) 20 epochs
    Change trend chart of model calculation amount
    Localization result diagram
    Cumulative error distribution function
    • Table 1. Algorithm flow chart of deep neural network model based on matrix decomposition algorithm

      View table

      Table 1. Algorithm flow chart of deep neural network model based on matrix decomposition algorithm

      Algorithm: deep neural network model based on matrix factorization algorithm
      input: LED-ID dataset X, label y, learning rate η
      output: trained model

      perform NMF processing on input data A: AUV

      initialize parameters: Conv 1 (3, 16), Conv 2 (16, 32), Conv 3(32, 64)

      define activation function σ(x)=max(0, x)

      define pooling operations P(l)(i, j)=maxp.q[1s]F(l)(i+p, j+q)

      define dropout regularization and dropout probability p=0.5

      initialization optimizer, learning rate η=0.0005

      execute for each training round:

      forward propagation:

      compute convolution output, apply ReLU, pooling and dropout

      map features to full connection layer

      calculate predicted value ŷ

      calculate cross entropy loss function 

      backpropagation:

      updating model parameters using the Adam optimizer

      validation:

      monitoring validation set losses

      if the loss is not improved for several consecutive rounds

      stop the training in advance

      return to model

    • Table 2. Experimental parameters

      View table

      Table 2. Experimental parameters

      ParameterValue
      Room size /(m×m×m)6×6×3
      Camera resolution1080p
      Camera frame rate /(frame/s)30
      Field of view (FOV) /(°)80
      ISO100
      Shutter speed12000
    • Table 3. Dataset image allocation

      View table

      Table 3. Dataset image allocation

      LableTrain setValidation setTest set
      14000200100
      24000200100
    • Table 4. Hierarchical parameter quantity and floating-point operation quantity

      View table

      Table 4. Hierarchical parameter quantity and floating-point operation quantity

      LayerParametesFLOPs
      Conv 14487168
      Conv 146409280
      Conv 1184964624
      FC 1131200262144
      FC 1258512
      Total155042283728
    Tools

    Get Citation

    Copy Citation Text

    Yiyi Xu, Lifang Feng, Zhuo Xue. Indoor Positioning System Based on Matrix Factorization and Deep Neural Networks[J]. Acta Optica Sinica, 2025, 45(10): 1010001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Feb. 16, 2025

    Accepted: Mar. 19, 2025

    Published Online: May. 19, 2025

    The Author Email: Lifang Feng (lffeng@ustb.edu.cn)

    DOI:10.3788/AOS250604

    CSTR:32393.14.AOS250604

    Topics