Laser & Infrared, Volume. 55, Issue 2, 288(2025)
Airborne infrared UXO target detection method based on SAE-YOLOv5
[1] [1] T. Frey, Prop., Explos., Pyrotech. UXO and environmental risk factors impacting EOD operations in German waters[J]. Propellants Explosives Pyrotechnics, 2024, 49(4): e2300206.
[3] [3] Baji M Jr., Potonik B. UAV thermal imaging for unexploded ordnance detection by using deep learning[J]. Remote Sensing, 2023, 15(4): 967.
[5] [5] Cho S, Ma J, A. Yakimenko O. Aerial multi-spectral AI-based detection system for unexploded ordnance[J]. Defence Technology, 2023, 27(9): 24-37.
[14] [14] Arola, S., et al. Vision-based deep learning for UAVs collaboration[C]//Conference on Unmanned Systems Technology XXI, 2019: 11021.
[15] [15] Qi, Z., et al., First results from Drone-based transient electromagnetic survey to map and detect unexploded ordnance[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(12): 2055-2059.
[16] [16] Andrew Brock, et al. Large scale gan training for high fidelity natural image synthesis[J]. arXiv: 1809.11096.
[20] [20] Lowe D G. Distinctive image features from scale invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
Get Citation
Copy Citation Text
LIU Zi-yu, ZHAO Xu, LI Lian-peng, XU Xue-ping. Airborne infrared UXO target detection method based on SAE-YOLOv5[J]. Laser & Infrared, 2025, 55(2): 288
Category:
Received: Mar. 25, 2024
Accepted: Apr. 3, 2025
Published Online: Apr. 3, 2025
The Author Email: ZHAO Xu (zhaoxu@bistu.edu.cn)