Acta Optica Sinica, Volume. 43, Issue 17, 1716001(2023)

Rapid Preparation of Co/C Composite Absorber by Laser Irradiation

Xiaonong Wang1,3,4, Xiaoxia Li1,2,3,4、**, Xiujun Bai1,4, Qi Liu1, and Bin Wang1、*
Author Affiliations
  • 1College of Electronic Engineering, National University of Defense Technology, Hefei 230037, Anhui, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Hefei 230037, Anhui, China
  • 3Anhui Laboratory of Advanced Laser Technology, Hefei 230037, Anhui, China
  • 4Key Laboratory of Infrared and Low Temperature Plasma of Anhui Province, Hefei 230037, Anhui, China
  • show less
    References(22)

    [1] Chu Q H, Yang M S, Chen J et al. Characteristics of tunable terahertz multi-band absorber[J]. Chinese Journal of Lasers, 46, 1214003(2019).

    [2] Wu M X, Wang Y, Zhou G H et al. Core-shell MOFs@MOFs: diverse designability and enhanced selectivity[J]. ACS Applied Materials & Interfaces, 12, 54285-54305(2020).

    [3] Xia T L, Lin Y C, Li W Z et al. Photocatalytic degradation of organic pollutants by MOFs based materials: a review[J]. Chinese Chemical Letters, 32, 2975-2984(2021).

    [4] Liu Y, Chen Z, Xie W H et al. Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology[J]. Journal of Alloys and Compounds, 809, 151837(2019).

    [5] Lü Y Y, Wang Y T, Li H L et al. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties[J]. ACS Applied Materials & Interfaces, 7, 13604-13611(2015).

    [6] Qiu Y, Wen B, Yang H B et al. MOFs derived Co@C@MnO nanorods with enhanced interfacial polarization for boosting the electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 602, 242-250(2021).

    [7] Yang K, Cui Y H, Li Q A et al. Bimetallic MOFs-derived yolk-shell structure ZnCo/NC@TiO2 and its microwave absorbing properties[J]. Applied Surface Science, 556, 149715(2021).

    [8] Lasagni A, Holzapfel C, Mücklich F. Periodic pattern formation of intermetallic phases with long range order by laser interference metallurgy[J]. Advanced Engineering Materials, 7, 487-492(2005).

    [9] Veith M, Andres K, Petersen C et al. Periodical micro-structuring of hydride containing metastable aluminumoxide using laser interference metallurgy[J]. Advanced Engineering Materials, 7, 27-30(2005).

    [10] Jiang H Q, Tong L, Liu H D et al. Graphene-metal-metastructure monolith via laser shock-induced thermochemical stitching of MOF crystals[J]. Matter, 2, 1535-1549(2020).

    [11] Su J L, Chen L Q, Tan C L et al. Progress in machine-learning-assisted process optimization and novel material development in additive manufacturing[J]. Chinese Journal of Lasers, 49, 1402101(2022).

    [12] Wang T Y, Li X, Bian J T et al. Research progress of laser-induced surface periodic structure[J]. Laser & Optoelectronics Progress, 58, 0700007(2021).

    [13] Li Q, Guo J N, Zhu H et al. Space-confined synthesis of ZIF-67 nanoparticles in hollow carbon nanospheres for CO2 adsorption[J]. Small, 15, 1804874(2019).

    [14] Meng Y J, Zhang L X, Jiu H F et al. Construction of g-C3N4/ZIF-67 photocatalyst with enhanced photocatalytic CO2 reduction activity[J]. Materials Science in Semiconductor Processing, 95, 35-41(2019).

    [15] Bhakta N, Chakrabarti P K. XRD analysis, Raman, AC conductivity and dielectric properties of Co and Mn co-doped SnO2 nanoparticles[J]. Applied Physics A, 125, 73(2019).

    [16] Zhang X Y, Sun X W, Xu D Y et al. Synthesis of MOF-derived Co@C composites and application for efficient hydrolysis of sodium borohydride[J]. Applied Surface Science, 469, 764-769(2019).

    [17] Kuchi R, Sharma M, Lee S W et al. Rational design of carbon shell-encapsulated cobalt nanospheres to enhance microwave absorption performance[J]. Progress in Natural Science: Materials International, 29, 88-93(2019).

    [18] Gao N, Li W P, Wang W S et al. Balancing dielectric loss and magnetic loss in Fe-NiS2/NiS/PVDF composites toward strong microwave reflection loss[J]. ACS Applied Materials & Interfaces, 12, 14416-14424(2020).

    [19] Fu C, He D W, Wang Y S et al. Enhanced microwave absorption performance of RGO-modified Co@C nanorods[J]. Synthetic Metals, 257, 116187(2019).

    [20] Qin M, Zhang L M, Zhao X R et al. Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber[J]. Advanced Functional Materials, 31, 2103436(2021).

    [21] Jia H X, Xing H L, Ji X L et al. Self-template and in situ polymerization strategy to lightweight hollow MnO2@polyaniline core-shell heterojunction with excellent microwave absorption properties[J]. Applied Surface Science, 537, 147857(2021).

    [22] Li D M, Li Y R, Wang X et al. Dual-band resonance induced broadband low-frequency radar absorber based on electric ring resonator embedded magnetic absorbing materials[J]. Journal of Electromagnetic Waves and Applications, 35, 801-812(2021).

    Tools

    Get Citation

    Copy Citation Text

    Xiaonong Wang, Xiaoxia Li, Xiujun Bai, Qi Liu, Bin Wang. Rapid Preparation of Co/C Composite Absorber by Laser Irradiation[J]. Acta Optica Sinica, 2023, 43(17): 1716001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Apr. 12, 2023

    Accepted: Jun. 8, 2023

    Published Online: Sep. 14, 2023

    The Author Email: Li Xiaoxia (lxxhong@163.com), Wang Bin (wangbin_dkxy@nudt.edu.cn)

    DOI:10.3788/AOS230807

    Topics