Semiconductor Optoelectronics, Volume. 46, Issue 4, 587(2025)
Research Progress on Blue-Green Light Detectors Based on Underwater Wireless Optical Communication
[1] [1] Schirripa Spagnolo G, Cozzella L, Leccese F. Underwater optical wireless communications: overview[J]. Sensors, 2020, 20(8): 2261.
[3] [3] Zeng Z. A survey of underwater wireless optical communication[D]. University of British Columbia, 2015.
[4] [4] Fujita S. Wide-bandgap semiconductor materials: for their full bloom[J]. Japanese Journal of Applied Physics, 2015, 54(3): 030101.
[6] [6] Sai N, Shao Z, Wu M, et al. Flexible Te nanorod array/thin Si mixed-dimensional heterojunction photodetectors with 99% light absorptance for long-distance, multi-environment adaptive underwater wireless optical communication[J]. Chemical Engineering Journal, 2025, 519: 165255.
[7] [7] Wang F, Wang Z, Yin L, et al. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection[J]. Chemical Society Reviews, 2018, 47(16): 6296-6341.
[8] [8] Nur R, Tsuchiya T, Toprasertpong K, et al. High responsivity in MoS2 phototransistors based on charge trapping HfO2 dielectrics[J]. Communications Materials, 2020, 1: 103.
[9] [9] Deng W, Chen Y, You C, et al. High detectivity from a lateral graphene–MoS2 Schottky photodetector grown by chemical vapor deposition[J]. Advanced Electronic Materials, 2018, 4(9): 1800069.
[10] [10] Zhang Z, Ji P, Li S, et al. High-performance broadband flexible photodetector based on Gd3Fe5O12-assisted double van der Waals heterojunctions[J]. Microsystems & Nanoengineering, 2023, 9: 84.
[11] [11] Ning Y, Zhang Z, Teng F, et al. Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction[J]. Small, 2018, 14(13): 1703754.
[12] [12] Zhang Y, Xu W, Xu X, et al. Self-powered dual-color UV–green photodetectors based on SnO2 millimeter wire and microwires/CsPbBr3 particle heterojunctions[J]. The Journal of Physical Chemistry Letters, 2019, 10(4): 836-841.
[13] [13] Liu J, Liu F, Liu H, et al. Mixed-dimensional CsPbBr 3@ZnO heterostructures for high-performance p-n diodes and photodetectors[J]. Nano Today, 2021, 36: 101055.
[14] [14] Chen H, Lin Z, Qiu H, et al. High-responsivity natural-electrolyte undersea photoelectrochemical photodetector with self-powered Cu@GaN nanowires network[J]. Advanced Functional Materials, 2023, 33(29): 2302872.
[15] [15] Luo L B, Zheng K, Ge C W, et al. Surface plasmon-enhanced nano-photodetector for green light detection[J]. Plasmonics, 2016, 11(2): 619-625.
[16] [16] Gao L, Chen C, Zeng K, et al. Broadband, sensitive and spectrally distinctive SnS2 nanosheet/PbS colloidal quantum dot hybrid photodetector[J]. Light: Science & Applications, 2016, 5(7): e16126.
[17] [17] Tian W, Liu D, Cao F, et al. Hybrid nanostructures for photodetectors[J]. Advanced Optical Materials, 2017, 5(4): 1600468.
[18] [18] Gao Y, Cansizoglu H, Polat K G, et al. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes[J]. Nature Photonics, 2017, 11(5): 301-308.
[19] [19] Rowan O. Photodetectors: Devices and Applications[M]. Larsen and Keller Education, 2017.
[20] [20] Unsuree N, Selvi H, Crabb M G, et al. Visible and infrared photocurrent enhancement in a graphene-silicon Schottky photodetector through surface-states and electric field engineering[J]. 2D Materials, 2019, 6(4): 041004.
[21] [21] An Y, Behnam A, Pop E, et al. Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions[J]. Applied Physics Letters, 2013, 102(1): 013110.
[22] [22] Riazimehr S, Kataria S, Gonzalez-Medina J M, et al. High responsivity and quantum efficiency of graphene/silicon photodiodes achieved by interdigitating Schottky and gated regions[J]. ACS Photonics, 2019, 6(1): 107-115.
[23] [23] Selvi H, Unsuree N, Whittaker E, et al. Towards substrate engineering of graphene–silicon Schottky diode photodetectors[J]. Nanoscale, 2018, 10(7): 3399-3409.
[24] [24] Ji P, Yang S, Wang Y, et al. High-performance photodetector based on an interface engineering-assisted graphene/silicon Schottky junction[J]. Microsystems & Nanoengineering, 2022, 8: 9.
[25] [25] Wang Y, Yang S, Lambada D R, et al. A graphene-silicon Schottky photodetector with graphene oxide interlayer[J]. Sensors and Actuators A: Physical, 2020, 314: 112232.
[26] [26] Huang Z, Mao Y, Lin G, et al. Low dark current broadband 360-1650 nm ITO/Ag/n-Si Schottky photodetectors[J]. Optics Express, 2018, 26(5): 5827.
[27] [27] Xu H, Ren A, Wu J, et al. Recent advances in 2D MXenes for photodetection[J]. Advanced Functional Materials, 2020, 30(24): 2000907.
[28] [28] Xie H, Peng Y, Li J, et al. Lateral separate absorption multibuffer multiplication avalanche photodiode based on SOI film[J]. IEEE Transactions on Electron Devices, 2019, 66(7): 3003-3006.
[29] [29] Xie H, Liu G, Cai X, et al. Impact of circular layout on characteristics in LSAMBM APD based on SOI film[J]. Silicon, 2022, 14(7): 3395-3401.
[30] [30] Alirezaei I S, Andre N, Flandre D. Enhanced ultraviolet avalanche photodiode with 640-nm-thin silicon body based on SOI technology[J]. IEEE Transactions on Electron Devices, 2020, 67(11): 4641-4644.
[31] [31] Atef M, Polzer A, Zimmermann H. Avalanche double photodiode in 40-nm standard CMOS technology[J]. IEEE Journal of Quantum Electronics, 2013, 49(3): 350-356.
[32] [32] Qin S, Li C, Li B, et al. All-Si large-area photodetectors with bandwidth of more than 10 GHz[J]. IEEE Transactions on Electron Devices, 2019, 66(12): 5187-5190.
[33] [33] Iiyama K, Maruyama T, Gyobu R, et al. High speed and high responsivity avalanche photodiode fabricated by standard CMOS process in blue wavelength region[J]. IEICE Transactions on Electronics, 2018, E101.C(7): 574-580.
[34] [34] Zafar F, Bakaul M, Parthiban R. Laser-diode-based visible light communication: toward gigabit class communication[J]. IEEE Communications Magazine, 2017, 55(2): 144-151.
[35] [35] Chen C W, Wang W C, Wu J T, et al. Visible light communications for the implementation of Internet-of-things[J]. Optical Engineering, 2016, 55(6): 060501.
[36] [36] Fahs B, Chowdhury A J, Zhang Y, et al. Design and modeling of blue-enhanced and bandwidth-extended PN photodiode in standard CMOS technology[J]. IEEE Transactions on Electron Devices, 2017, 64(7): 2859-2866.
[37] [37] Mohammed Napiah Z A F, Hishiki T, Iiyama K. Wavelength dependence of silicon avalanche photodiode fabricated by CMOS process[J]. Optics & Laser Technology, 2017, 92: 193-197.
[38] [38] Hossain M M, Ray S, Cheong J S, et al. Low-noise speed-optimized large area CMOS avalanche photodetector for visible light communication[J]. Journal of Lightwave Technology, 2017, 35(11): 2315-2324.
[39] [39] Lee M J, Choi W Y. Performance optimization and improvement of silicon avalanche photodetectors in standard CMOS technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(2): 3801013.
[40] [40] Zhi W, Quan Q, Yu P, et al. A 45 nm CMOS avalanche photodiode with 8.4-GHz bandwidth[J]. Micromachines, 2020, 11(1): 65.
[41] [41] Ho K T, Chen R, Liu G, et al. 3.2 gigabit-per-second visible light communication link with InGaN/GaN MQW micro-photodetector[J]. Optics Express, 2018, 26(3): 3037-3045.
[42] [42] Wang H, Zhang X, Wang H, et al. In0.15Ga0.85N visible-light metal-semiconductor-metal photodetector with GaN interlayers deposited by pulsed NH3[J]. Journal of Crystal Growth, 2018, 489: 31-35.
[43] [43] Chowdhury A M, Chandan G, Pant R, et al. Self-powered, broad band, and ultrafast InGaN-based photodetector[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 10418-10425.
[44] [44] Chai J, Kong D, Chen S, et al. High responsivity and high speed InGaN-based blue-light photodetectors on Si substrates[J]. RSC Advances, 2021, 11(40): 25079-25083.
[45] [45] Chai J, Chen L, Cao B, et al. High-speed graphene/InGaN heterojunction photodetectors for potential application in visible light communication[J]. Optics Express, 2022, 30(3): 3903-3912.
[46] [46] Kong D, Lin T, Chai J, et al. A self-powered MXene/InGaN van der Waals heterojunction mini-photodetector for visible light communication[J]. Applied Physics Letters, 2023, 122(14): 142104.
[47] [47] Chen L, Xie S, Lan J, et al. High-speed and high-responsivity blue light photodetector with an InGaN NR/PEDOT: PSS heterojunction decorated with Ag NWs[J]. ACS Applied Materials & Interfaces, 2024, 16(22): 29477-29487.
[48] [48] Xu Z, Luo Z, Lin X, et al. 15.26Gb/s Si-substrate GaN high-speed visible light photodetector with super-lattice structure[J]. Optics Express, 2023, 31(20): 33064-33076.
[49] [49] Luo L, Huang Y, Cheng K, et al. MXene-GaN van der Waals metal-semiconductor junctions for high performance multiple quantum well photodetectors[J]. Light: Science & Applications, 2021, 10: 177.
[50] [50] Aiello A, Hoque A K M H, Baten M Z, et al. High-gain silicon-based InGaN/GaN dot-in-nanowire array photodetector[J]. ACS Photonics, 2019, 6(5): 1289-1294.
[51] [51] Ko T S, Lin D Y, Lin C F, et al. High-temperature carrier density and mobility enhancements in AlGaN/GaN HEMT using AlN spacer layer[J]. Journal of Crystal Growth, 2017, 464: 175-179.
[52] [52] Zhang S, Li M C, Feng Z H, et al. High electron mobility and low sheet resistance in lattice-matched AlInN/AlN/GaN/AlN/GaN double-channel heterostructure[J]. Applied Physics Letters, 2009, 95(21): 212101.
[53] [53] Chai J, Liu Q, Chen L, et al. Axial InN/InGaN nanorod array heterojunction photodetector with ultrafast speed[J]. Advanced Electronic Materials, 2023, 9(3): 2201193.
[54] [54] Alkhazragi O, Kang C H, Kong M, et al. 7.4-gbit/s visible-light communication utilizing wavelength-selective semipolar micro-photodetector[J]. IEEE Photonics Technology Letters, 2020, 32(13): 767-770.
Get Citation
Copy Citation Text
LI Yaming, DONG Yusen, DU Chenxi, LI Jiaxin, LI Chong. Research Progress on Blue-Green Light Detectors Based on Underwater Wireless Optical Communication[J]. Semiconductor Optoelectronics, 2025, 46(4): 587
Category:
Received: Mar. 21, 2025
Accepted: Sep. 18, 2025
Published Online: Sep. 18, 2025
The Author Email: