Journal of Semiconductors, Volume. 41, Issue 8, 082002(2020)

High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure

Chang Li1,2, Cheng Chen2,3, Jie Chen2,3, Tao He4, Hongwei Li2,5, Zeyuan Yang1,2, Liu Xie2, Zhongchang Wang6, and Kai Zhang2
Author Affiliations
  • 1Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
  • 2i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
  • 3School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
  • 4CAS Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
  • 5Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
  • 6International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, Braga 4715-330, Portugal
  • show less
    References(43)

    [1] M Orita, H Ohta, M Hirano et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 77, 4166(2000).

    [2] S J Pearton, J C Yang, P H Cary et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 5, 011301(2018).

    [3] H Zhou, J C Zhang, C F Zhang et al. A review of the most recent progresses of state-of-art gallium oxide power devices. J Semicond, 40, 011803(2019).

    [4] H Dong, H W Xue, Q M He et al. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material. J Semicond, 40, 011802(2019).

    [5] M Higashiwaki, K Sasaki, H Murakami et al. Recent progress in Ga2O3power devices. Semicond Sci Technol, 31, 034001(2016).

    [6] W S Hwang, A Verma, H Peelaers et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl Phys Lett, 104, 203111(2014).

    [7] S Ahn, F Ren, J Kim et al. Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors. Appl Phys Lett, 109, 062102(2016).

    [8] J Kim, M A Mastro, M J Tadjer et al. Heterostructure WSe2–Ga2O3 junction field-effect transistor for low-dimensional high-power electronics. ACS Appl Mater Interfaces, 10, 29724(2018).

    [9] J Guo, L Y Wang, Y W Yu et al. SnSe/MoS2 van der Waals heterostructure junction field-effect transistors with nearly ideal subthreshold slope. Adv Mater, 31, 1902962(2019).

    [10] Z Hajnal, J Miró, G Kiss et al. Role of oxygen vacancy defect states in then-type conduction of β-Ga2O3. J Appl Phys, 86, 3792(1999).

    [11] S K Barman, M N Huda. Mechanism behind the easy exfoliation of Ga2O3 ultra-thin film along (100) surface. Phys Status Solidi RRL, 13, 1800554(2019).

    [12] Y Liu, Y Huang, X F Duan. Van der Waals integration before and beyond two-dimensional materials. Nature, 567, 323(2019).

    [13] X D Yan, I S Esqueda, J H Ma et al. High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure. Appl Phys Lett, 112, 032101(2018).

    [14] J Kim, J H Kim. Monolithically integrated enhancement-mode and depletion-mode β-Ga2O3 MESFETs with graphene-gate architectures and their logic applications. ACS Appl Mater Interfaces, 12, 7310(2020).

    [15] J Kim, M A Mastro, M J Tadjer et al. Quasi-two-dimensional h-BN/β-Ga2O3 heterostructure metal–insulator–semiconductor field-effect transistor. ACS Appl Mater Interfaces, 9, 21322(2017).

    [16] L K Li, Y J Yu, G J Ye et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 9, 372(2014).

    [17] H Liu, A T Neal, Z Zhu et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033(2014).

    [18] F N Xia, H Wang, Y C Jia. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun, 5, 4458(2014).

    [19] Z Q Zhou, Y Cui, P H Tan et al. Optical and electrical properties of two-dimensional anisotropic materials. J Semicond, 40, 061001(2019).

    [20] Y J Xu, Z Shi, X Y Shi et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: Properties, synthesis and applications. Nanoscale, 11, 14491(2019).

    [21] J S Qiao, X H Kong, Z X Hu et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 5, 4475(2014).

    [22] B C Deng, V Tran, Y J Xie et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat Commun, 8, 14474(2017).

    [23] Y J Xu, X Y Shi, Y S Zhang et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat Commun, 11, 1330(2020).

    [24] N Youngblood, C Chen, S J Koester et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat Photonics, 9, 247(2015).

    [25] X L Chen, X B Lu, B C Deng et al. Widely tunable black phosphorus mid-infrared photodetector. Nat Commun, 8, 1672(2017).

    [26] W K Zhu, X Wei, F G Yan et al. Broadband polarized photodetector based on p-BP/n-ReS2 heterojunction. J Semicond, 40, 092001(2019).

    [27] M Batmunkh, M Bat-Erdene, J G Shapter. Black phosphorus: Synthesis and application for solar cells. Adv Energy Mater, 8, 1701832(2018).

    [28] Y Yang, J Gao, Z Zhang et al. Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells. Adv Mater, 28, 8937(2016).

    [29] S K Muduli, E Varrla, S A Kulkarni et al. 2D black phosphorous nanosheets as a hole transporting material in perovskite solar cells. J Power Sources, 371, 156(2017).

    [30] A G Ricciardulli, P W M Blom. Solution-processable 2D materials applied in light-emitting diodes and solar cells. Adv Mater Technol, 1900972(2020).

    [31] X X Ge, Z H Xia, S J Guo. Recent advances on black phosphorus for biomedicine and biosensing. Adv Funct Mater, 29, 1900318(2019).

    [32] G Wu, X J Wu, Y J Xu et al. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv Mater, 31, 1806492(2019).

    [33] W Tao, N Kong, X Y Ji et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem Soc Rev, 48, 2891(2019).

    [34] M Qiu, D Wang, W Y Liang et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc Natl Acad Sci USA, 115, 501(2018).

    [35] Y J Xu, J Yuan, K Zhang et al. Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv Funct Mater, 27, 1702211(2017).

    [36] W Lv, X Fu, X Luo et al. Multistate logic inverter based on black phosphorus/SnSeS heterostructure. Adv Electron Mater, 5, 1800416(2019).

    [37] P J Jeon, Y T Lee, J Y Lim et al. Black phosphorus-zinc oxide nanomaterial heterojunction for p–n diode and junction field-effect transistor. Nano Lett, 16, 1293(2016).

    [38] J Y Lim, M Kim, Y Jeong et al. Van der Waals junction field effect transistors with both n- and p-channel transition metal dichalcogenides. npj 2D Mater Appl, 2, 37(2018).

    [39] J H Wang, D N Liu, H Huang et al. In-plane black phosphorus/dicobalt phosphide heterostructure for efficient electrocatalysis. Angew Chem Int Ed, 57, 2600(2018).

    [40] Y Zheng, Z H Yu, H H Ou et al. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv Funct Mater, 28, 1705407(2018).

    [41] Q Y He, Y Liu, C L Tan et al. Quest for p-type two-dimensional semiconductors. ACS Nano, 13, 12294(2019).

    [42] Y X Deng, Z Luo, N J Conrad et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano, 8, 8292(2014).

    [43] Q Lv, F G Yan, N Mori et al. Interlayer band-to-band tunneling and negative differential resistance in van der Waals BP/InSe field-effect transistors. Adv Funct Mater, 30, 1910713(2020).

    Tools

    Get Citation

    Copy Citation Text

    Chang Li, Cheng Chen, Jie Chen, Tao He, Hongwei Li, Zeyuan Yang, Liu Xie, Zhongchang Wang, Kai Zhang. High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure[J]. Journal of Semiconductors, 2020, 41(8): 082002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Articles

    Received: May. 29, 2020

    Accepted: --

    Published Online: Sep. 10, 2021

    The Author Email:

    DOI:10.1088/1674-4926/41/8/082002

    Topics