Acta Laser Biology Sinica, Volume. 32, Issue 5, 385(2023)

Deciphering the Intricacies of Microbial Influence on Tumor Initiation and Progression Within the Tumor Microenvironment: Unveiling Molecular Mechanisms

LI Longjie1,2, KE Zhangmin1,2, LIU Yiting1, LI Li1,2,3, ZHANG Yunlei1, and ZHANG Xiuwei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(65)

    [1] [1] SEPICH-POORE G D, ZITVOGEL L, STRAUSSMAN R, et al. The microbiome and human cancer [J]. Science (New York, NY), 2021, 371(6536): eabc4552.

    [2] [2] NEJMAN D, LIVYATAN I, FUKS G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria [J]. Science (New York, NY), 2020, 368(6494): 973-980.

    [3] [3] PUSHALKAR S, HUNDEYIN M, DALEY D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression [J]. Cancer Discovery, 2018, 8(4): 403-416.

    [4] [4] ANDREEVA N V, GABBASOVA R R, GRIVENNIKOV S I, et al. Microbiome in cancer progression and therapy [J]. Current Opinion in Microbiology, 2020, 56: 118-126.

    [5] [5] SUN C, MEZZADRA R, SCHUMACHER T N, et al. Regulation and function of the PD-L1 checkpoint [J]. Immunity, 2018, 48(3): 434-452.

    [6] [6] WINKLER J, ABISOYE-OGUNNIYAN A, METCALF K J, et al. Concepts of extracellular matrix remodelling in tumour progression and metastasis [J]. Nature Communications, 2020, 11(1): 5120.

    [7] [7] Gü? E, POLLARD J W. Redefining macrophage and neutrophil biology in the metastatic cascade [J]. Immunity, 2021, 54(5): 885-902.

    [8] [8] DENARDO D G, RUFFELL B. Macrophages as regulators of tumour immunity and immunotherapy [J]. Nature Reviews Immunology, 2019, 19(6): 369-382.

    [9] [9] LYU Y, ZHAO Y, WANG X, et al. Increased intratumoral mast cells foster immune suppression and gastric cancer progression through TNF-α-PD-L1 pathway [J]. Journal for Immunotherapy of Cancer, 2019, 7(1): 54.

    [10] [10] VEGLIA F, SANSEVIERO E, GABRILOVICH D I, et al. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity [J]. Nature Reviews Immunology, 2021, 21(8): 485-498.

    [11] [11] COHEN N, SHANI O, RAZ Y, et al. Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of chitinase 3-like 1 [J]. Oncogene, 2017, 36(31): 4457-4468.

    [12] [12] COSTA A, KIEFFER Y, SCHOLER-DAHIREL A, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer [J]. Cancer Cell, 2018, 33(3): 463-479.

    [13] [13] MACE T A, AMEEN Z, COLLINS A, et al. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a stat3-dependent manner [J]. Cancer Research, 2013, 73(10): 3007-3018.

    [14] [14] KUMAR V, DONTHIREDDY L, MARVEL D, et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors [J]. Cancer Cell, 2017, 32(5): 654-68.

    [15] [15] ERSHAID N, SHARON Y, DORON H, et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis [J]. Nature Communications, 2019, 10(1): 4375.

    [16] [16] INOUE M, HAGER J H, FERRARA N, et al. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis [J]. Cancer Cell, 2002, 1(2): 193-202.

    [17] [17] FU A, YAO B, DONG T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer [J]. Cell, 2022, 185(8): 1356-1372.

    [18] [18] GALEANO NINO J L, WU H, LACOURSE K D, et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer [J]. Nature, 2022, 611(7937): 810-817.

    [19] [19] LACOURSE K D, ZEPEDA-RIVERA M, KEMPCHINSKY A G, et al. The cancer chemotherapeutic 5-fluorouracil is a potent fusobacterium nucleatum inhibitor and its activity is modified by intratumoral microbiota [J]. Cell Reports, 2022, 41(7): 111625.

    [20] [20] BULLMAN S, PEDAMALLU C S, SICINSKA E, et al. Analysis of fusobacterium persistence and antibiotic response in colorectal cancer [J]. Science (New York, NY), 2017, 358(6369): 1443-1448.

    [21] [21] SHI Y, ZHENG W, YANG K, et al. Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling [J]. The Journal of Experimental Medicine, 2020, 217(5): e20192282.

    [22] [22] GUR C, IBRAHIM Y, ISAACSON B, et al. Binding of the Fap2 protein of fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack [J]. Immunity, 2015, 42(2): 344-355.

    [23] [23] GUR C, MAALOUF N, GERHARD M, et al. The helicobacter pylori HopQ outermembrane protein inhibits immune cell activities [J]. Oncoimmunology, 2019, 8(4): e1553487.

    [24] [24] JAVAHERI A, KRUSE T, MOONENS K, et al. Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs [J]. Nature Microbiology, 2016, 2: 16189.

    [25] [25] AYKUT B, PUSHALKAR S, CHEN R, et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL [J]. Nature, 2019, 574(7777): 264-267.

    [26] [26] GELLER L T, BARZILY-ROKNI M, DANINO T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine [J]. Science (New York, NY), 2017, 357(6356): 1156-1160.

    [27] [27] CHARLSON E S, BITTINGER K, HAAS A R, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract [J]. American Journal of Respiratory and Critical Care Medicine, 2011, 184(8): 957-963.

    [28] [28] DENG Y, YANG J, QIAN J, et al. TLR1/TLR2 signaling blocks the suppression of monocytic myeloid-derived suppressor cell by promoting its differentiation into M1-type macrophage [J]. Molecular Immunology, 2019, 112: 266-273.

    [29] [29] MüLLER E, CHRISTOPOULOS P F, HALDER S, et al. Toll-like receptor ligands and interferon-γ synergize for induction of antitumor M1 macrophages [J]. Frontiers in Immunology, 2017, 8: 1383.

    [30] [30] JIN C, LAGOUDAS G K, ZHAO C, et al. Commensal microbiota promote lung cancer development via γδ T cells [J]. Cell, 2019, 176(5): 998-1013.e16.

    [31] [31] SIPE L M, CHAIB M, PINGILI A K, et al. Microbiome, bile acids, and obesity: how microbially modified metabolites shape anti-tumor immunity [J]. Immunological Reviews, 2020, 295(1): 220-239.

    [32] [32] MA C, HAN M, HEINRICH B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells [J]. Science (New York, NY), 2018, 360(6391): eaan5931.

    [33] [33] MOSSANEN J C, KOHLHEPP M, WEHR A, et al. CXCR6 inhibits hepatocarcinogenesis by promoting natural killer T- and CD4+ T-cell-dependent control of senescence [J]. Gastroenterology, 2019, 156(6): 1877-1889.

    [34] [34] RIDLON J M, KANG D J, HYLEMON P B, et al. Bile salt biotransformations by human intestinal bacteria [J]. Journal of Lipid Research, 2006, 47(2): 241-259.

    [35] [35] YOSHIMOTO S, LOO T M, ATARASHI K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome [J]. Nature, 2013, 499(7456): 97-101.

    [36] [36] FRIEDMAN S L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver [J]. Physiological Reviews, 2008, 88(1): 125-172.

    [37] [37] LOO T M, KAMACHI F, WATANABE Y, et al. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity [J]. Cancer Discovery, 2017, 7(5): 522-538.

    [38] [38] SHALAPOUR S, KARIN M. Cruel to be kind: epithelial, microbial, and immune cell interactions in gastrointestinal cancers [J]. Annual Review of Immunology, 2020, 38: 649-671.

    [39] [39] DZUTSEV A, BADGER J H, PEREZ-CHANONA E, et al. Microbes and cancer [J]. Annual Review of Immunology, 2017, 35: 199-228.

    [40] [40] ARTHUR J C, PEREZ-CHANONA E, MüHLBAUER M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota [J]. Science (New York, NY), 2012, 338(6103): 120-123.

    [41] [41] KOSTIC A D, CHUN E, ROBERTSON L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment [J]. Cell Host & Microbe, 2013, 14(2): 207-215.

    [42] [42] WILSON M R, JIANG Y, VILLALTA P W, et al. The human gut bacterial genotoxin colibactin alkylates DNA [J]. Science (New York, NY), 2019, 363(6428): eaar7785.

    [43] [43] DEJEA C M, FATHI P, CRAIG J M, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria [J]. Science (New York, NY), 2018, 359(6375): 592-597.

    [44] [44] CHEN T, LI Q, WU J, et al. Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism [J]. Cancer Immunology, Immunotherapy: CII, 2018, 67(10): 1635-1646.

    [45] [45] YU T, GUO F, YU Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy [J]. Cell, 2017, 170(3): 548-563.

    [46] [46] KIM J H, KORDAHI M C, CHAC D, et al. Toll-like receptor-6 signaling prevents inflammation and impacts composition of the microbiota during inflammation-induced colorectal cancer [J]. Cancer Prevention Research (Philadelphia, Pa), 2020, 13(1): 25-40.

    [47] [47] WANG L, TANG L, FENG Y, et al. A purified membrane protein from akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice [J]. Gut, 2020, 69(11): 1988-1997.

    [48] [48] COHEN R J, SHANNON B A, MCNEAL J E, et al. Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution? [J]. The Journal of Urology, 2005, 173(6): 1969-1974.

    [49] [49] MA J, GNANASEKAR A, LEE A, et al. Influence of intratumor microbiome on clinical outcome and immune processes in prostate cancer [J]. Cancers, 2020, 12(9): 2524.

    [50] [50] NAKATSUJI T, CHEN T H, BUTCHER A M, et al. A commensal strain of staphylococcus epidermidis protects against skin neoplasia [J]. Science Advances, 2018, 4(2): eaao4502.

    [51] [51] ZHOU B, SUN C, HUANG J, et al. The biodiversity composition of microbiome in ovarian carcinoma patients [J]. Scientific Reports, 2019, 9(1): 1691.

    [52] [52] ZHAO J, HE D, LAI H M, et al. Comprehensive histological imaging of native microbiota in human glioma [J]. Journal of Biophotonics, 2022, 15(4): e202100351.

    [53] [53] HOSTE E, ARWERT E N, LAL R, et al. Innate sensing of microbial products promotes wound-induced skin cancer [J]. Nature Communications, 2015, 6: 5932.

    [54] [54] POORE G D, KOPYLOVA E, ZHU Q, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach [J]. Nature, 2020, 579(7800): 567-574.

    [55] [55] YAMAMURA K, IZUMI D, KANDIMALLA R, et al. Intratumoral fusobacterium nucleatum levels predict therapeutic response to neoadjuvant chemotherapy in esophageal squamous cell carcinoma [J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2019, 25(20): 6170-6179.

    [56] [56] GNANASEKAR A, CASTANEDA G, IYANGAR A, et al. The intratumor microbiome predicts prognosis across gender and subtypes in papillary thyroid carcinoma [J]. Computational and Structural Biotechnology Journal, 2021, 19: 1986-1997.

    [57] [57] KALIA V C, PATEL S K S, CHO B K, et al. Emerging applications of bacteria as antitumor agents [J]. Seminars in Cancer Biology, 2022, 86(Pt 2): 1014-1025.

    [58] [58] ROY S, TRINCHIERI G. Microbiota: a key orchestrator of cancer therapy [J]. Nature Reviews Cancer, 2017, 17(5): 271-285.

    [59] [59] DONG X, PAN P, ZHENG D W. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer [J]. Science Advances, 2020, 6(20): eaba1590.

    [60] [60] LEVENTHAL D S, SOKOLOVSKA A, LI N, et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity [J]. Nature Communications, 2020, 11(1): 2739.

    [61] [61] CANALE F P, BASSO C, ANTONINI G, et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy [J]. Nature, 2021, 598(7882): 662-666.

    [62] [62] KULKARNI A A, EBADI M, ZHANG S, et al. Comparative analysis of antibiotic exposure association with clinical outcomes of chemotherapy versus immunotherapy across three tumour types [J]. ESMO Open, 2020, 5(5): e000803.

    [63] [63] XU H, XU X, WANG H, et al. The association between antibiotics use and outcome of cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis [J]. Critical Reviews in Oncology Hematology, 2020, 149: 102909.

    [64] [64] CORTELLINI A, MAIO M D, NIGRO O, et al. Differential influence of antibiotic therapy and other medications on oncological outcomes of patients with non-small cell lung cancer treated with first-line pembrolizumab versus cytotoxic chemotherapy [J]. Journal for Immunotherapy of Cancer, 2021, 9(4): e002421.

    [65] [65] CORTELLINI A, RICCIUTI B, FACCHINETTI F, et al. Antibiotic-exposed patients with non-small-cell lung cancer preserve efficacy outcomes following first-line chemo-immunotherapy [J]. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 2021, 32(11): 1391-1399.

    Tools

    Get Citation

    Copy Citation Text

    LI Longjie, KE Zhangmin, LIU Yiting, LI Li, ZHANG Yunlei, ZHANG Xiuwei. Deciphering the Intricacies of Microbial Influence on Tumor Initiation and Progression Within the Tumor Microenvironment: Unveiling Molecular Mechanisms[J]. Acta Laser Biology Sinica, 2023, 32(5): 385

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 25, 2023

    Accepted: --

    Published Online: Jan. 27, 2024

    The Author Email:

    DOI:10.3969/j.issn.1007-7146.2023.05.001

    Topics