Acta Optica Sinica, Volume. 44, Issue 4, 0416001(2024)
Effect of Rb Doping on Photoelectric Properties of K-Cs-Sb Cathode Material
[1] An Y B. Simulation study on characteristics of alkali antimony photocathode[D](2014).
[2] Ren L, Sun J N, Si S G et al. Study on the improvement of the 20-inch microchannel plate photomultiplier tubes for neutrino detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 977, 164333(2020).
[3] Zeng Y S, Yu X Q, Tian Y. Research advances in integrated electron accelerators driven by spectrum band from terahertz to optical waves[J]. Chinese Journal of Lasers, 50, 1714008(2023).
[4] Wang A W, Li C, Dai Q. Ultrafast low-energy electron holography based on coherent electron source[J]. Chinese Journal of Lasers, 50, 0113003(2023).
[5] Xie J Q, Attenkofer K, Demarteau M et al. Large area planar photocathode for MCP-based photodetectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 955, 163234(2020).
[6] Dunham B, Barley J, Bartnik A et al. Record high-average current from a high-brightness photoinjector[J]. Applied Physics Letters, 102, 034105(2013).
[7] Ghosh C, Varma B P. Preparation and study of properties of a few alkali antimonide photocathodes[J]. Journal of Applied Physics, 49, 4549-4553(1978).
[8] Xie J Q, Demarteau M, Wagner R et al. Synchrotron X-ray study of a low roughness and high efficiency K2CsSb photocathode during film growth[J]. Journal of Physics D: Applied Physics, 50, 205303(2017).
[9] Zhang F, Li X P, Li X S. Development of preparation systems with K2CsSb photocathodes and study on the preparation process[J]. Chinese Physics Letters, 36, 022901(2019).
[10] Cultrera L, Gulliford C, Bartnik A et al. Rb based alkali antimonide high quantum efficiency photocathodes for bright electron beam sources and photon detection applications[J]. Journal of Applied Physics, 121, 055306(2017).
[11] Dvořák M. Some properties of the trialkali Sb-K-Rb-Cs photocathode[M]. Photo-electronic image devices, proceedings of the fourth symposium, 347-355(1969).
[12] Gao L S, Li C M. Investigation of multi-alkali photocathode[J]. Acta Electronica Sinica, 14, 27-31(1986).
[13] Wang B L, Li C M, Zeng Z Q et al. Preparation and study of improvement [Cs, Rb]Na2KSb photo cathode[J]. Vacuum and Cryogenics, 15, 112-116(2009).
[14] Ettema A R H F, de Groot R A. Electronic structure of Cs2KSb and K2CsSb[J]. Physical Review B, 66, 115102(2002).
[15] Kalarasse L, Bennecer B, Kalarasse F. Optical properties of the alkali antimonide semiconductors Cs3Sb, Cs2KSb, CsK2Sb and K3Sb[J]. Journal of Physics and Chemistry of Solids, 71, 314-322(2010).
[16] Kalarasse L, Bennecer B, Kalarasse F et al. Pressure effect on the electronic and optical properties of the alkali antimonide semiconductors Cs3Sb, KCs2Sb, CsK2Sb and K3Sb∶Ab initio study[J]. Journal of Physics and Chemistry of Solids, 71, 1732-1741(2010).
[17] Shu Z X, Zhang Y J, Wang X C et al. Effect of antisite defects on photoelectric properties of K2CsSb photocathode[J]. Acta Optica Sinica, 41, 1216001(2021).
[18] Wang X C, Zhang K M, Jin M C et al. First-principles investigation of structural, electronic and optical properties of cubic K2CsSb with different surface orientations[J]. Solid State Communications, 356, 114960(2022).
[19] Murtaza G, Ullah M, Ullah N et al. Structural, elastic, electronic and optical properties of bi-alkali antimonides[J]. Bulletin of Materials Science, 39, 1581-1591(2016).
[20] Hafner J. Ab-initio simulations of materials using VASP: density-functional theory and beyond[J]. Journal of Computational Chemistry, 29, 2044-2078(2008).
[21] Shabaev A, Jensen K L, Finkenstadt D et al. Density of states of Cs3Sb calculated using density-functional theory for modeling photoemission[J]. Proceedings of SPIE, 10374, 103740L(2017).
[22] Linnik M, Christou A. Calculations of optical properties for quaternary III-V semiconductor alloys in the transparent region and above (0.2-4.0 eV)[J]. Physica B: Condensed Matter, 318, 140-161(2002).
[23] Zhang D Q, Tian H M, He Q M et al. Electronic and optical properties of low-concentration Ge doping and substitution of Sn and Ge for CsPbI3[J]. Laser & Optoelectronics Progress, 60, 1516002(2023).
[24] Bechstedt F, Scheffler M. Alkali adsorption on GaAs(110): atomic structure, electronic states and surface dipoles[J]. Surface Science Reports, 18, 145-198(1993).
[25] Lang N D, Kohn W. Theory of metal surfaces: charge density and surface energy[J]. Physical Review B, 1, 4555-4568(1970).
[26] Wu K P, Sun C X, Ma W F et al. Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation[J]. Acta Physica Sinica, 66, 088102(2017).
[27] Phuc H V, Hieu N N, Hoi B D et al. Tuning the electronic properties, effective mass and carrier mobility of MoS2 monolayer by strain engineering: first-principle calculations[J]. Journal of Electronic Materials, 47, 730-736(2018).
[28] Künzel H, Döhler G H, Ploog K. Determination of photoexcited carrier concentration and mobility in GaAs doping superlattices by Hall effect measurements[J]. Applied Physics A, 27, 1-10(1982).
Get Citation
Copy Citation Text
Yunfeng Han, Muchun Jin, Ling Ren, Xingchao Wang, Kaimin Zhang, Xiaorong Liu, Yunsheng Qian, Yijun Zhang. Effect of Rb Doping on Photoelectric Properties of K-Cs-Sb Cathode Material[J]. Acta Optica Sinica, 2024, 44(4): 0416001
Category: Materials
Received: Sep. 14, 2023
Accepted: Nov. 30, 2023
Published Online: Feb. 29, 2024
The Author Email: Yijun Zhang (zhangyijun423@126.com)
CSTR:32393.14.AOS231553