APPLIED LASER, Volume. 41, Issue 6, 1215(2021)

Fracture Mechanism of Ti6Al4V Alloy Parts Fabricated by Selective Laser Melting

Shi Chengkun1,2、*, Yuan Yanping1,2, Li Zhen3, Xiang Shibo1,2, and Chen Jimin1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(25)

    [1] [1] HAYAT M D, SINGH H, HE Z, et al. Titanium metal matrix composites: An overview[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 418-438.

    [2] [2] LEWANDOWSKI J J, SEIFI M. Metal additive manufacturing: A review of mechanical properties[J]. Annual Review of Materials Research, 2016, 46(1): 151-186.

    [4] [4] KAUR M, SINGH K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications[J]. Materials Science & Engineering C, Materials for Biological Applications, 2019, 102: 844-862.

    [5] [5] SHAH F A, THOMSEN P, PALMQUIST A. Osseointegration and current interpretations of the bone-implant interface[J]. Acta Biomaterialia, 2019, 84: 1-15.

    [6] [6] ELSAYED M, GHAZY M, YOUSSEF Y, et al. Optimization of SLM process parameters for Ti6Al4V medical implants[J]. Rapid Prototyping Journal, 2019, 25(3): 433-447.

    [7] [7] LI Y C, DING Y F, MUNIR K, et al. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications[J]. Acta Biomaterialia, 2019, 87: 273-284.

    [8] [8] MIERZEJEWSKA A, HUDK R, SIDUN J. Mechanical properties and microstructure of DMLS Ti6Al4V alloy dedicated to biomedical applications[J]. Materials, 2019, 12(1): 176.

    [9] [9] WANG Y S, ZOU B, HUANG C Z. Tool wear mechanisms and micro-channels quality in micro-machining of Ti6Al4V alloy using the Ti(C7N3)-based cermet micro-Mills[J]. Tribology International, 2019, 134: 60-76.

    [10] [10] CHEN C Y, XIE Y C, YAN X C, et al. Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing[J]. Additive Manufacturing, 2019, 27: 595-605.

    [11] [11] TAN P F, SHEN F, LI B, et al. A thermo-metallurgical-mechanical model for selective laser melting of Ti6Al4V[J]. Materials & Design, 2019, 168: 107642.

    [12] [12] FRAZIER W E. Metal additive manufacturing: A review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928.

    [13] [13] DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components-Process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.

    [14] [14] HERZOG D, SEYDA V, WYCISK E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117: 371-392.

    [15] [15] LIU S Y, SHIN Y C. Additive manufacturing of Ti6Al4V alloy: A review[J]. Materials & Design, 2019, 164: 107552.

    [16] [16] SING S L, AN J, YEONG W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs[J]. Journal of Orthopaedic Research, 2016, 34(3): 369-385.

    [17] [17] YAN X C, LI Q, YIN S, et al. Mechanical and in vitro study of an isotropic Ti6Al4V lattice structure fabricated using selective laser melting[J]. Journal of Alloys and Compounds, 2019, 782: 209-223.

    [18] [18] YUAN L, DING S L, WEN C E. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review[J]. Bioactive Materials, 2019, 4: 56-70.

    [19] [19] WANG S, LIU L L, LI K, et al. Pore functionally graded Ti6Al4V scaffolds for bone tissue engineering application[J]. Materials & Design, 2019, 168: 107643.

    [20] [20] WALLY Z J, HAQUE A M, FETEIRA A, et al. Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90: 20-29.

    [21] [21] SUN D S, GU D D, LIN K J, et al. Selective laser melting of titanium parts: Influence of laser process parameters on macro-and microstructures and tensile property[J]. Powder Technology, 2019, 342: 371-379.

    [22] [22] FOTOVVATI B, NAMDARI N, DEHGHANGHADIKOLAEI A. Fatigue performance of selective laser melted Ti6Al4V components: state of the art[J]. Materials Research Express, 2018, 6(1): 012002.

    [23] [23] CHERN A H, NANDWANA P, YUAN T, et al. A review on the fatigue behavior of Ti6Al4V fabricated by electron beam melting additive manufacturing[J]. International Journal of Fatigue, 2019, 119: 173-184.

    [24] [24] SIMONELLI M, TSE Y Y, TUCK C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti6Al4V[J]. Materials Science and Engineering: A, 2014, 616: 1-11.

    [25] [25] RAFI H K, STARR T L, STUCKER B E. A comparison of the tensile, fatigue, and fracture behavior of Ti6Al4V and 15-5 PH stainless steel parts made by selective laser melting[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(5/6/7/8): 1299-1309.

    [26] [26] KUMAR P, RAMAMURTY U. Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti6Al4V alloy[J]. Acta Materialia, 2019, 169: 45-59.

    Tools

    Get Citation

    Copy Citation Text

    Shi Chengkun, Yuan Yanping, Li Zhen, Xiang Shibo, Chen Jimin. Fracture Mechanism of Ti6Al4V Alloy Parts Fabricated by Selective Laser Melting[J]. APPLIED LASER, 2021, 41(6): 1215

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 18, 2020

    Accepted: --

    Published Online: Feb. 17, 2022

    The Author Email: Chengkun Shi (15734067686@163.com)

    DOI:10.14128/j.cnki.al.20214106.1215

    Topics