Journal of Inorganic Materials, Volume. 37, Issue 11, 1151(2022)

Materdicine and Medmaterial

Hui HUANG1,2 and Yu CHEN1,2,3、*
Author Affiliations
  • 11. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
  • 22. School of Life Sciences, Shanghai University, Shanghai 200444, China
  • 33. School of Medicine, Shanghai University, Shanghai 200444, China
  • show less
    References(123)

    [1] MALEKJAHANI A, SINDHWANI S, SYED A M et al. Engineering steps for mobile point-of-care diagnostic devices[J]. Accounts of Chemical Research, 2406-2414(2019).

    [3] HUANG H, FENG W, CHEN Y et al. Inorganic nanoparticles in clinical trials and translations[J]. Nano Today(2020).

    [4] HUANG H, FENG W, CHEN Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications[J]. Chemical Society Reviews, 11381-11485(2021).

    [5] PELAZ B, ALEXIOU C H, ALVAREZ-PUEBLA R A et al. Diverse applications of nanomedicine[J]. ACS Nano, 2313-2381(2017).

    [6] BURDA C, CHEN X, NARAYANAN R et al. Chemistry and properties of nanocrystals of different shapes[J]. Chemical Reviews, 1025-1102(2005).

    [8] SHI J J, KANTOFF P W, WOOSTER R et al. Cancer nanomedicine: progress, challenges and opportunities[J]. Nature Reviews Cancer, 20-37(2017).

    [9] IRBY D, DU C, LI F. Lipid-drug conjugate for enhancing drug delivery[J]. Molecular Pharmaceutics, 1325-1338(2017).

    [10] MURA S, NICOLAS J, COUVREUR P. Stimuli-responsive nanocarriers for drug delivery[J]. Nature Materials, 991-1003(2013).

    [11] NICOLAS J, MURA S, BRAMBILLA D et al. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery[J]. Chemical Society Reviews, 1147-1235(2013).

    [12] KUNJACHAN S, EHLING J, STORM G et al. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects[J]. Chemical Reviews, 10907-10937(2015).

    [14] WANG C, HUANG W, ZHOU Y et al. 3D printing of bone tissue engineering scaffolds[J]. Bioactive Materials, 82-91(2020).

    [15] KAUR B, KUMAR S, KAUSHIK B K. Recent advancements in optical biosensors for cancer detection[J]. Biosensors and Bioelectronics(2022).

    [19] LIN H, GAO S, DAI C et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows[J]. Journal of the American Chemical Society, 16235-16247(2017).

    [20] YANG Q, HU Z, ZHU S et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance[J]. Journal of the American Chemical Society, 1715-1724(2018).

    [21] YANG H C, LI R F, ZHANG Y J et al. Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window[J]. Journal of the American Chemical Society, 2601-2607(2021).

    [22] FAN Y, WANG S, ZHANG F. Optical multiplexed bioassays for improved biomedical diagnostics[J]. Angewandte Chemie International Edition, 13342-13353(2019).

    [23] WELSHER K, LIU Z, SHERLOCK SP et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice[J]. Nature Nanotechnology, 773-780(2009).

    [26] KIM D, KIM J, PARK Y I et al. Recent development of inorganic nanoparticles for biomedical imaging[J]. ACS Central Science, 324-336(2018).

    [35] LIU Z, LIN H, ZHAO M L et al. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics[J]. Theranostics, 1648-1664(2018).

    [36] LIU Z, ZHAO M L, LIN H et al. 2D magnetic titanium carbide MXene for cancer theranostics[J]. Journal of Materials Chemistry B, 3541-3548(2018).

    [37] CAO Y, WU T, ZHANG K et al. Engineered exosome-mediated near-infrared-II region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy[J]. ACS Nano, 1499-1510(2019).

    [43] KIM J, CHHOUR P, HSU J et al. Use of nanoparticle contrast agents for cell tracking with computed tomography[J]. Bioconjugate Chemistry, 1581-1597(2017).

    [47] WANG H, CHANG J, SHI M et al. A dual-targeted organic photothermal agent for enhanced photothermal therapy[M]. Angewandte Chemie International Edition, 1073(2019).

    [50] ZHEN X, XIE C, PU K. Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy[M]. Angewandte Chemie International Edition, 4006(2018).

    [52] ZHOU J, JIANG Y, HOU S et al. Compact plasmonic blackbody for cancer theranosis in the near-infrared II window[J]. ACS Nano, 2643-2651(2018).

    [59] FENG W, CHEN Y. Chemoreactive nanomedicine[J]. Journal of Materials Chemistry B, 6753-6764(2020).

    [60] LUCKY S S, SOO K C, ZHANG Y. Nanoparticles in photodynamic therapy[J]. Chemical Reviews, 1990-2042(2015).

    [61] CHANG M, FENG W, DING L et al. Persistent luminescence phosphor as in-vivo light source for tumoral cyanobacterial photosynthetic oxygenation and photodynamic therapy[J]. Bioactive Materials(2022).

    [62] ZHOU L, DONG C, DING L et al. Targeting ferroptosis synergistically sensitizes apoptotic sonodynamic anti-tumor nanotherapy[J]. Nano Today(2021).

    [63] SHEN Y, CHEN L, GUAN X et al. Tailoring chemoimmunostimulant bioscaffolds for inhibiting tumor growth and metastasis after incomplete microwave ablation[J]. ACS Nano, 20414-20429(2021).

    [66] MAHONEY K M, RENNERT P D, FREEMAN G J. Combination cancer immunotherapy and new immunomodulatory targets[J]. Nature Reviews Drug Discovery, 561-584(2015).

    [67] VANNEMAN M, DRANOFF G. Combining immunotherapy and targeted therapies in cancer treatment[J]. Nature Reviews Cancer, 237-251(2012).

    [68] SANG W, ZHANG Z, DAI Y et al. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy[J]. Chemical Society Reviews, 3771-3810(2019).

    [70] NAM J, SON S, PARK K S et al. Cancer nanomedicine for combination cancer immunotherapy[J]. Nature Reviews Materials, 398-414(2019).

    [71] SONG W, MUSETTI S N, HUANG L. Nanomaterials for cancer immunotherapy[J]. Biomaterials(2017).

    [72] CHEUNG A S, MOONEY D J. Engineered materials for cancer immunotherapy[J]. Nano Today, 511-531(2015).

    [76] XIANG H, YOU C, LIU W et al. Chemotherapy-enabled /augmented cascade catalytic tumor-oxidative nanotherapy[J]. Biomaterials(2021).

    [79] CHENG Q, WEI T, FARBIAK L et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing[J]. Nature Nanotechnology, 313-320(2020).

    [81] YIN H, SUN L, PU Y et al. Ultrasound-controlled CRISPR/Cas9 system augments sonodynamic therapy of hepatocellular carcinoma[J]. ACS Central Science, 2049-2062(2021).

    [83] ZHOU Y, WU C, CHANG J. Bioceramics to regulate stem cells and their microenvironment for tissue regeneration[J]. Materials Today(2019).

    [85] STEVENS M M. Biomaterials for bone tissue engineering[J]. Materials Today, 18-25(2008).

    [87] GEIGER B, SPATZ J P, BERSHADSKY A D. Environmental sensing through focal adhesions[J]. Nature Reviews Molecular Cell Biology, 21-33(2009).

    [89] SOMMARIVA M, LE NOCI V, BIANCHI F et al. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy[J]. Cellular and Molecular Life Sciences, 2739-2749(2020).

    [92] VASARMIDI E, TSITOURA E, SPANDIDOS D A et al. Pulmonary fibrosis in the aftermath of the COVID-19 era.[J]. Experimental and Therapeutic Medicine, 2557-2560(2020).

    [95] RICHELDI L, COLLARD H R, JONES M G. Idiopathic pulmonary fibrosis[J]. Lancet, 1941-1952(2017).

    [96] MERKT W, BUENO M, MORA AL et al. Senotherapeutics: targeting senescence in idiopathic pulmonary fibrosis[J]. Seminars in Cell & Developmental Biology(2020).

    [97] MALSIN E S, KAMP D W. The mitochondria in lung fibrosis: Friend or foe[J]. Translational Research(2018).

    [98] YU G, TZOUVELEKIS A, WANG R et al. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function[J]. Nature Medicine, 39-49(2018).

    [99] SALEH J, PEYSSONNAUX C, SINGH K K et al. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis[J]. Mitochondrion(2020).

    [101] FENG W, HAN X G, HU H et al. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases[J]. Nature Communications, 2203-16(2021).

    [108] GONG M M, SINTON D. Turning the page: advancing paper-based microfluidics for broad diagnostic application[J]. Chemical Reviews, 8447-8480(2017).

    [110] WANG C, QI B, LIN M et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays[J]. Nature Biomedical Engineering, 749-758(2021).

    [111] CHAIBUN T, PUENPA J, NGAMDEE T et al. Rapid electrochemical detection of coronavirus SARS-Cov-2[J]. Nature Communications, 802-10(2021).

    [113] LAURING A S, FRYDMAN J, ANDINO R. The role of mutational robustness in RNA virus evolution[J]. Nature Reviews Microbiology, 327-336(2013).

    [114] SEO G, LEE G, KIM M J et al. Rapid detection of COVID-19 causative virus (SARS-Cov-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor[J]. ACS Nano, 5135-5142(2020).

    [116] LI T, CHEN L, YANG X et al. A flexible pressure sensor based on an MXene-textile network structure[J]. Journal of Materials Chemistry C, 1022-1027(2019).

    [120] PANÁČEK A, KVÍTEK L, SMÉKALOVÁ M et al. Bacterial resistance to silver nanoparticles and how to overcome it.[J]. Nature Nanotechnology, 65-71(2018).

    Tools

    Get Citation

    Copy Citation Text

    Hui HUANG, Yu CHEN. Materdicine and Medmaterial[J]. Journal of Inorganic Materials, 2022, 37(11): 1151

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW

    Received: Apr. 4, 2022

    Accepted: --

    Published Online: Jan. 12, 2023

    The Author Email: Yu CHEN (chenyuedu@shu.edu.cn)

    DOI:10.15541/jim20220194

    Topics