Acta Laser Biology Sinica, Volume. 33, Issue 2, 108(2024)
Research Progress on the Regulation of Breast Cancer by Histone Deacetylases HDAC5
[1] [1] BARNEDA-ZAHONERO B, PARRAM. Histone deacetylases and cancer[J]. Molecular Oncology, 2012, 6(6): 579-589.
[2] [2] PARK S Y, KIM J S. A short guide to histone deacetylases includ- ing recent progress on class II enzymes[J]. Experimental and Molecular Medicine, 2020, 52(2): 204-212.
[3] [3] MATHIAS R A, GUISE A J, CRISTEA I M. Post-translational modifications regulate class IIa histone deacetylase (HDAC) func- tion in health and disease[J]. Molelular & Cellular Proteomics, 2015, 14(3): 456-470.
[4] [4] NARITA T, WEINERT B T, CHOUDHARY C. Functions and mechanisms of non-histone protein acetylation[J]. Nature Review Molecular Cell Biology, 2019, 20(3): 156-174.
[5] [5] BURGER M , CHORY J. Structural and chemical biology of deacetylases for carbohydrates, proteins, small molecules and his- tones[J]. Communications Biology, 2018, 1: 217.
[6] [6] MILAZZO G, MERCATELLI D, DI MUZIO G, et al. Histone deacetylases (HDACs): evolution, specificity, role in transcrip- tional complexes, and pharmacological actionability[J]. Genes (Basel), 2020, 11(5): 556.
[7] [7] GATLA H R, MUNIRAJ N, THEVKAR P, et al. Regulation of chemokines and cytokines by histone deacetylases and an update on histone decetylase inhibitors in human diseases[J]. Interna- tional Journal of Molecular Sciences, 2019, 20(5): 1110.
[8] [8] GUISE A J, CRISTEA I M. Approaches for studying the subcellu- lar localization, interactions, and regulation of histone deacetylase 5 (HDAC5)[J]. Methods Molecular Biology, 2016, 1436: 47-84.
[9] [9] GRECO T M, YU F, GUISE A J, et al. Nuclear import of his- tone deacetylase 5 by requisite nuclear localization signal phos- phorylation[J]. Molecular & Cellular Proteomics, 2011, 10(2): M110.004317.
[10] [10] VEGA R B, HARRISON B C, MEADOWS E, et al. Protein ki- nases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5[J]. Molecular and Cellular Biology, 2004, 24( 19): 8374-8385.
[11] [11] HA C H, WANG W, JHUN B S, et al. Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expres- sion and angiogenesis[J]. Journal of Biology Chemistry, 2008, 283(21): 14590-14599.
[12] [12] LINSEMAN D A, BARTLEY C M, LE S S, et al. Inactivation of the myocyte enhancer factor-2 repressor histone deacetylase-5 by endogenous Ca(2+) //calmodulin-dependent kinase II promotes depolarization-mediated cerebellar granule neuron survival[J]. Journal of Biology Chemistry, 2003, 278(42): 41472-41481.
[13] [13] MCKINSEY T A, ZHANG C L, OLSON E N. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases[J]. Molecular and Cellular Biology, 2001, 21( 18): 6312-6321.
[14] [14] HAWORTH R S, STATHOPOULOU K, CANDASAMY AJ, et al. Neurohormonal regulation of cardiac histone deacetylase 5 nuclear localization by phosphorylation-dependent and phosphorylation- independent mechanisms[J]. Circulation Research , 2012 , 110( 12): 1585-1595.
[15] [15] DENG X B, EWTON D Z, MERCER S E, et al. Mirk/dyrk1B decreases the nuclear accumulation of class II histone deacetylases during skeletal muscle differentiation[J]. Journal of Biology Chemistry, 2005, 280(6): 4894-4905.
[16] [16] WEEKS K L, RANIERI A, KARAS A, et al. Beta-adrenergic stimulation induces histone deacetylase 5 (HDAC5) nuclear accu- mulation in cardiomyocytes by B55alpha-PP2A-mediated dephos- phorylation[J]. Journal of the American Heart Association, 2017, 6(4): e004861.
[17] [17] GUISE A J, GRECO T M, ZHANG I Y, et al. Aurora B-dependent regulation of class IIa histone deacetylases by mitotic nuclear lo- calization signal phosphorylation[J]. Molecular Cell Proteomics, 2012, 11( 11): 1220-1229.
[18] [18] SOMAIA E E, ANDREW R G, EMAD A R, et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome[J]. Cancer Research, 2009, 69(9): 3802-3809.
[19] [19] REDDY D, KHADE B, PANDYA R, et al. A novel method for iso- lation of histones from serum and its implications in therapeutics and prognosis of solid tumours[J]. Clinical Epigenetics, 2017, 9: 30.
[20] [20] PARK S Y, JUN J A, JEONG K J, et al. Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer[J]. Oncology Re- ports, 2011, 25(6): 1677-1681.
[21] [21] MüLLER B M, JANA L, KASAJIMA A, et al. Differential ex- pression of histone deacetylases HDAC1, 2 and 3 in human breast cancer: overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression[J]. BMC Cancer, 2013, 13: 215.
[22] [22] YANG Shuyun, LI Haibo, ZHANG Jianbing. Clinicopathologi- cal significance of HDAC1 mRNA expression in invasive breast cancer[J]. Journal of Clinical and Experimental Pathology, 2011, 27(9): 929-932.
[23] [23] LIU Pengyong. HDAC1 and E-cadherin expression in breast can- cer[D]. Jiamusi: Jiamusi University, 2020.
[24] [24] PATANI N, JIANG W G, NEWBOLD R F, et al. Histone-modifier gene expression profiles are associated with pathological and clini- cal outcomes in human breast cancer[J]. Anticancer Research, 2011, 31( 12): 4115-4125.
[25] [25] PEIXOTO P, CASTRONOVO V, MATHEUS N, et al. HDAC5 is required for maintenance of pericentric heterochromatin, and con- trols cell-cycle progression and survival of human cancer cells[J]. Cell Death Differentiation, 2012, 19(7): 1239-1252.
[26] [26] LI A, LIU Z, LI M, et al. HDAC5, a potential therapeutic target and prognostic biomarker, promotes proliferation, invasion and migration in human breast cancer[J]. Oncotarget, 2016, 7(25): 37966-37978.
[27] [27] BERAA, RUSS E, MANOHARAN M S, et al. Proteomic analysis of inflammatory biomarkers associated with breast cancer recur- rence[J]. Military Medicine, 2020, 185(Suppl 1): 669-675.
[28] [28] ZHANG Z, YAMASHITA H, TOYAMA T, et al. HDAC6 expres- sion is correlated with better survival in breast cancer[J]. Clinical Cancer Research, 2004, 10(20): 6962-6968.
[29] [29] SAJI S, KAWAKAMI M, HAYASHI S, et al. Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer[J]. Onco- gene, 2005, 24(28): 4531-4539.
[30] [30] LOU Changjie, ZHANG Qingyuan, ZHAO Wenhui. Expression of HDAC6 in ER positive breast cancer and relationship with ef- ficacy of endocrine therapy[J]. Progress in Modern Biomedicine, 2008( 10): 1897-1899.
[31] [31] CAO C, VASILATOS S N, BHARGAVA R, et al. Functional in- teraction of histone deacetylase 5 (HDAC5) and lysine-specific demethylase 1 (LSD1) promotes breast cancer progression[J]. Oncogene, 2017, 36( 1): 133-145.
[32] [32] HAN X, GUI B, XIONG C, et al. Destabilizing LSD1 by Jade-2 promotes neurogenesis: an antibraking system in neural develop- ment[J]. Molecular Cell, 2014, 55(3): 482-494.
[33] [33] WANG Xiang. Study on the mechanism of HDAC5 regulating mRNA m~6A modification in breast cancer cells[D]. Yichang: China Three Gorges University, 2021.
[34] [34] HUANG Y H, TAN M J, GOSINK M, et al. Histone deacetylase 5 is not a p53 target gene, but its overexpression inhibits tumor cell growth and induces apoptosis[J]. Cancer Research, 2002, 62( 10): 2913-2922.
[35] [35] SEN N, KUMARI R, SINGH M I, et al. HDAC5, a key compo- nent in temporal regulation of p53-mediated transactivation in response to genotoxic stress[J]. Molecular Cell, 2013, 52(3): 406-420.
[36] [36] ZHOU Y K, XIN J, MA J, et al. HDAC5 loss impairs RB repres- sion of pro-oncogenic genes and confers CDK4/6 inhibitor resis- tance in cancer[J]. Cancer Research, 2021, 81(6): 1486-1499.
[37] [37] HSIEH T H, HSU C Y, TSAI C F, et al. HDAC inhibitors target HDAC5, upregulate microRNA-125a-5p, and induce apoptosis in breast cancer cells[J]. Molecular Therapy, 2015, 23(4): 656-666.
[38] [38] BIAN X H, LIANG Z X, FENG A, et al. HDAC inhibitor sup- presses proliferation and invasion of breast cancer cells through regulation of miR-200c targeting CRKL[J]. Biochemical Phar- macology, 2018, 147: 30-37.
[39] [39] SALMENA L, POLISENO L, TAY Y, et al. A ceRNA hypothesis: the rosetta stone of a hidden RNA language?[J]. Cell, 2011, 146(3): 353-358.
[40] [40] LIU Y Y, LI M D, YU H H, et al. lncRNA CYTOR promotes tamoxifen resistance in breast cancer cells via sponging miR-125a- 5p[J]. International Journal of Molecular Medicine, 2020, 45(2): 497-509.
[41] [41] WANG J, XIE S, YANG J, et al. The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy[J]. Journal of Hematology & Oncology, 2019, 12( 1): 81.
[42] [42] LI Y H, JIANG B H, ZHU H B, et al. Inhibition of long non- coding RNA ROR reverses resistance to Tamoxifen by inducing autophagy in breast cancer[J]. Tumour Biology, 2017, 39(6): 1010428317705790.
[43] [43] GAO H L, HAO G J, SUN Y, et al. Long noncoding RNA H19 mediated the chemosensitivity of breast cancer cells via Wnt pathway and EMT process[J]. Onco Targets Therapy, 2018, 11: 8001-8012.
[44] [44] RICHON V M, SANDHOFF T W, RIFKIND R A, et al. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation[J]. Proceedings of the Na- tional Academy of Sciences of the United States ofAmerica, 2000, 97( 18): 10014-10019.
[45] [45] DU Mo, ZHAO Meimei, GAO Yanrong, et al. Research progress of histone deacetylase inhibitors[J]. Fine and Specialty Chemi- cals, 2022, 30( 1): 46-50.
[46] [46] YOSHIDA M, KIJIMA M, AKITA M, et al. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A[J]. Journal of Biology Chemistry, 1990, 265(28): 17174-17179.
[47] [47] HUANG W T, TSAI Y H, CHEN S H, et al. HDAC2 and HDAC5 up-regulations modulate survivin and miR-125a-5p expressions and promote hormone therapy resistance in estrogen receptor posi- tive breast cancer cells[J]. Frontiers in Pharmacology, 2017, 8: 902.
[48] [48] CAO C Y, WU H, VASILATOS S N, et al. HDAC5-LSD1 axis regulates antineoplastic effect of natural HDAC inhibitor sulfora- phane in human breast cancer cells[J]. International Journal of Cancer, 2018, 143(6): 1388-1401.
[49] [49] OLTRA S S, CEJALVO J M, TORMO E, et al. HDAC5 Inhibi- tors as a potential treatment in breast cancer affecting very young women[J]. Cancers (Basel), 2020, 12(2): 412.
[50] [50] XUE Y, LIAN W W, ZHI J Q, et al. HDAC5-mediated deacety- lation and nuclear localisation of SOX9 is critical for tamoxifen resistance in breast cancer[J]. British Journal of Cancer, 2019, 121( 12): 1039-1049.
[51] [51] LACHENMAYER A, TOFFANIN S, CABELLOS L, et al. Com- bination therapy for hepatocellular carcinoma: additive preclinical efficacy of the HDAC inhibitor panobinostat with sorafenib[J]. Journal of Hepatology, 2012, 56(6): 1343-1350.
[52] [52] EL-AWADY R, SALEH E, HAMOUDI R, et al. Discovery of novel class of histone deacetylase inhibitors as potential anticancer agents[J]. Bioorganic & Medicinal Chemistry, 2021, 42: 116251.
[53] [53] KINGSTON B, CUTTS R J, BYE H, et al. Genomic profile of advanced breast cancer in circulating tumour DNA[J]. Nature Communications, 2021, 12( 1): 2423.
Get Citation
Copy Citation Text
LIU Chenghua, MEI Huiqing, ZHANG Jiale, LI Huaqin, WU Wenmei. Research Progress on the Regulation of Breast Cancer by Histone Deacetylases HDAC5[J]. Acta Laser Biology Sinica, 2024, 33(2): 108
Category:
Received: Sep. 22, 2023
Accepted: --
Published Online: Aug. 14, 2024
The Author Email: Huaqin LI (huaqinli1118@163.com)