Laser & Infrared, Volume. 54, Issue 6, 998(2024)

Progress on traveling wave electrode for silicon photon modulator

JIANG Han, GAO Wei-yu, LI Tian-wen, FAN Yong-jie, ZHANG Zhi-qun, GUI Jin-bin, CHEN Hua, and FANG Qing*
Author Affiliations
  • College of Science, Kunming University of Science and Technology, Kunming 650500, China
  • show less
    References(34)

    [3] [3] Reed G T, Mashanovich G, Gardes FY, et al. Silicon optical modulators[J]. Nature Photonics.2010;4(8): 518-526.

    [5] [5] Shi Y, Zhang Y, Wan Y, et al. Silicon photonics for high-capacity data communications[J]. Photonics Research, 2022, 10(9).

    [7] [7] Xiao X, Xu H, Li X, et al. High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization[J]. Optics Express, 2013, 21(4): 4116-4125.

    [8] [8] Xu H, Li X, Xiao X, et al. Demonstration and characterization of high-speed silicon depletion-mode Mach-Zehnder modulators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4): 23-32.

    [9] [9] Wang J, Zhou L, Zhu H, et al. Silicon high-speed binary phase-shift keying modulator with a single-drive push-pull high-speed traveling wave electrode[J]. Photonics Research.2015;3(3): 58.

    [10] [10] Zhou Y, Zhou L, Zhu H, et al. Modeling and optimization of a single-drive push-pull silicon Mach-Zehnder modulator[J]. Photonics Research.2016, 4(4): 153-161.

    [11] [11] Zeng Z, Ding D, Gao Q, et al. Variation of signal reflection on electrodes of silicon mach-zehnder modulators: influence of nanoscale variation and mitigation strategies[J]. Nanomaterials, 2021, 11(2): 499.

    [12] [12] Li M, Wang L, Li X, et al. Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications[J]. Photonics Research, 2018, 6(2): 02000109.

    [16] [16] Song R, Sun J, Wang J, et al. High-speed compact folded michelson interferometer modulator[J]. Opt. Express, 2022;30(13): 23704-23715.

    [17] [17] Ansheng L, Richard J, Ling L, et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J]. Nature, 2004, 427(6975): 615-618.

    [18] [18] Streshinsky M, Ding R, Liu Y, et al. Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm[J]. Opt Express, 2013, 21(25): 30350-30357.

    [19] [19] Tu X, Liow TY, Song J, et al.50 Gb/s silicon optical modulator with traveling-wave electrodes[J]. Opt Express, 2013, 21(10): 12776-12782.

    [20] [20] Ding R, Liu Y, Li Q, et al. Design and characterization of a 30 GHz bandwidth low-power silicon traveling-wave modulator[J]. Optics Communications, 2014, 321: 124-133.

    [21] [21] Ding R, Liu Y, Ma Y, et al. High-speed silicon modulator with slow-wave electrodes and fully independent differential drive[J]. Journal of Lightwave Technology, 2014, 32(12): 2240-2247.

    [22] [22] Mac Lean S, Plant D V, Sharif Azadeh S, et al. Advances in silicon photonics segmented electrode Mach-Zehnder modulators and peaking enhanced resonant devices[C]//Spie Photonics North, 2014.

    [23] [23] Cheben P, tyroky J, Molina-Fernndez I, et al. Circuit modeling based optimization of high speed carrier depletion silicon modulators[J]. Integrated Optics: Physics and Simulations II, 2015.

    [24] [24] Gill D M, Proesel J E, Chi X, et al. Demonstration of a high extinction ratio monolithic CMOS integrated nanophotonic transmitter and 16 Gb/s optical link[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(4): 212-222.

    [25] [25] Gill D M, Green W M, Xiong C, et al. Distributed electrode Mach-Zehnder modulator with double-pass phase shifters and integrated inductors[J]. Opt Express, 2015, 23(13): 16857-16865.

    [26] [26] Patel D, Ghosh S, Chagnon M, et al. Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator[J]. Opt. Express, 2015, 23(11): 14263-14287.

    [27] [27] Petousi D, Zimmermann L, Gajda A, et al. Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si mach-zehnder modulators for high-speed operation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(4): 199-206.

    [28] [28] Patel D, Samani A, Veerasubramanian V, et al. Silicon photonic segmented modulator-based electro-Optic DAC for 100 Gb/s PAM-4 generation[J]. IEEE Photonics Technology Letters, 2015, 27(23): 2433-2436.

    [29] [29] Reed G T, Watts M R, Ferrotti T, et al. Power-efficient carrier-depletion SOI Mach-Zehnder modulators for 4 × 25 Gbit/s operation in the O-band[J]. Proceeding of SPIE—the International Society for Optical Ergineering, 2015, 9367: 93670-93670-11.

    [30] [30] Samani A, Chagnon M, Patel D, et al. A Low-voltage 35 GHz silicon photonic modulator-enabled 112 Gb/s transmission system[J]. IEEE Photonics Journal, 2015, 7(3): 1-13.

    [31] [31] Bahrami H, Sepehrian H, Park CS, et al. Time-domain large-signal modeling of traveling-wave modulators on SOI[J]. Journal of Lightwave Technology, 2016, 34(11): 2812-2823.

    [32] [32] Hinakura Y, Terada Y, Arai H, et al. Electro-optic phase matching in a Si photonic crystal slow light modulator using meander-line electrodes[J]. Opt Express, 2018, 26(9): 11538-11545.

    [33] [33] Hinakura Y, Akiyama D, Ito H, et al. Silicon photonic crystal modulators for high-speed transmission and wavelength division multiplexing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(3): 1-8.

    [34] [34] Mishra D, Sonkar R K. Design and analysis of a graded-index strained Si1-xGex optical PN phase shifter[J]. IEEE Photonics Journal, 2018.

    [35] [35] Mishra D, Minz M, Soknar R K, et al. Bandwidth optimization of germanium-doped silicon optical modulator for high-speed applications[C]//Nanophotonics and Micro/Nano Optics V, 2019.

    [36] [36] Zhou J, Zhang Q, Wang J, et al. Model and design of silicon photonic carrier-depletion Mach-Zehnder modulators for 400 Gb/s and beyond PAM and QAM applications[C]//Silicon Photonics XIV, 2019.

    [37] [37] Zhou J, Wang J, Zhu L, et al. High baud rate all-silicon photonics carrier depletion modulators[J]. Journal of Lightwave Technology, 2020, 38(2): 272-281.

    [38] [38] Jafari O, Shi W, LaRochelle S. Efficiency-speed trade off in slow-light silicon photonic modulators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(3): 1-11.

    [39] [39] Li K, Liu S, Thomson DJ, et al. Electronic-photonic convergence for silicon photonics transmitters beyond 100 Gbps on-off keying[J]. Optica, 2020, 7(11): 1514.

    [40] [40] Lee B Y, Cheng C H, Tsai C T, et al. Si Mach-Zehnder modulator for PAM-4, QAM-OFDM, and DMT transmission at C-Band[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29(6): 1-12.

    [41] [41] Gao J, Zhu K, Wu H. A 50 GHz bandwidth traveling-wave Mach-Zehnder modulator with built-in feedback equalization[J]. Journal of Lightwave Technology, 2022, 40(12): 3872-3881.

    Tools

    Get Citation

    Copy Citation Text

    JIANG Han, GAO Wei-yu, LI Tian-wen, FAN Yong-jie, ZHANG Zhi-qun, GUI Jin-bin, CHEN Hua, FANG Qing. Progress on traveling wave electrode for silicon photon modulator[J]. Laser & Infrared, 2024, 54(6): 998

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 19, 2023

    Accepted: May. 21, 2025

    Published Online: May. 21, 2025

    The Author Email: FANG Qing (qingfang@kust.edu.cn)

    DOI:10.3969/j.issn.1001-5078.2024.06.023

    Topics