Acta Laser Biology Sinica, Volume. 31, Issue 4, 361(2022)

Exome Sequencing Identification of a Novel Missense Mutation in NYX in a Family with High Myopia

LIU Shuyan1, DENG Nini2, CHEN Jinmao3, TIAN Qi4, and PENG Fenglan5、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    References(51)

    [1] [1] RESNIKOFF S, PASCOLINI D, MARIOTTI S P, et al. Global magnitude of visual impairment caused by uncorrected refractive errors in 2004[J]. Bulletin of the World Health Organization, 2008, 86(1): 63-70.

    [2] [2] HYMAN L. Myopic and hyperopic refractive error in adults: an overview[J]. Ophthalmic Epidemiology, 2007, 14(4): 192-197.

    [3] [3] SPERDUTO R D, SEIGEL D, ROBERTS J, et al. Prevalence of myopia in the United States[J]. Archives of Ophthalmology, 1983, 101(3): 405-407.

    [4] [4] KEMPEN J H, MITCHELL P, LEE K E, et al. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia[J]. Archives of Ophthalmology, 2004, 122(4): 495-505.

    [5] [5] SAWADA A, TOMIDOKORO A, ARAIE M, et al. Refractive errors in an elderly Japanese population: the Tajimi study[J]. Ophthalmology, 2008, 115(2): 363-370.e3.

    [6] [6] HE M, ZHENG Y, XIANG F. Prevalence of myopia in urban and rural children in mainland China[J]. Optometry and Vision Science, 2009, 86(1): 40-44.

    [7] [7] WONG T Y, FOSTER P J, HEE J, et al. Prevalence and risk factors for refractive errors in adult Chinese in Singapore[J]. Investigative Ophthalmology & Visual Science, 2000, 41(9): 2486-2494.

    [8] [8] YOUNG T L, METLAPALLY R, SHAY A E. Complex trait genetics of refractive error[J]. Archives of Ophthalmology, 2007, 125(1): 38-48.

    [9] [9] PERCIVAL S P. Redefinition of high myopia: the relationship of axial length measurement to myopic pathology and its relevance to cataract surgery[J]. Developments in Ophthalmology, 1987, 14: 42-46.

    [10] [10] Flitcroft D I, He M G, Jonas J B, et al. IMI-defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies[J]. Investigative Ophthalmology & Visual Science, 2019, 60(3): M20-M30.

    [11] [11] MORGAN I, ROSE K. How genetic is school myopia?[J]. Progress in Retinal and Eye Research, 2005, 24(1): 1-38.

    [13] [13] ENTHOVEN C A, TIDEMAN J, POLLING J R, et al. Interaction between lifestyle and genetic susceptibility in myopia: the Generation R study[J]. European Journal of Epidemiology, 2019, 34(8): 777-784.

    [14] [14] LIN H J, WAN L, TSAI Y, et al. Muscarinic acetylcholine receptor 1 gene polymorphisms associated with high myopia[J]. Molecular Vision, 2009, 15: 1774-1780.

    [15] [15] KLEIN A P, SUKTITIPAT B, DUGGAL P, et al. Heritability analysis of spherical equivalent, axial length, corneal curvature, and anterior chamber depth in the Beaver Dam Eye Study[J]. Archives of Ophthalmology, 2009, 127(5): 649-655.

    [16] [16] HAMMOND C J, SNIEDER H, GILBERT C E, et al. Genes and environment in refractive error: the twin eye study[J]. Investigative Ophthalmology & Visual Science, 2001, 42(6): 1232-1236.

    [17] [17] PALURU P C, NALLASAMY S, DEVOTO M, et al. Identification of a novel locus on 2q for autosomal dominant high-grade myopia[J]. Investigative Ophthalmology & Visual Science, 2005, 46(7): 2300-2307.

    [18] [18] ZHANG Q, GUO X, XIAO X, et al. A new locus for autosomal dominant high myopia maps to 4q22-q27 between D4S1578 and D4S1612[J]. Molecular Vision, 2005, 11: 554-560.

    [19] [19] TRAN-VIET K N, POWELL C, BARATHI V A, et al. Mutations in SCO2 are associated with autosomal-dominant high-grade myopia[J]. American Journal of Human Genetics, 2013, 92(5): 820-826.

    [20] [20] ALDAHMESH M A, KHAN A O, ALKURAYA H, et al. Mutations in LRPAP1 are associated with severe myopia in humans[J]. American Journal of Human Genetics, 2013, 93(2): 313-320.

    [21] [21] MORDECHAI S, GRADSTEIN L, PASANEN A, et al. High myopia caused by a mutation in LEPREL1, encoding prolyl 3-hydroxylase 2[J]. American Journal of Human Genetics, 2011, 89(3): 438-445.

    [22] [22] ZHANG Q, XIAO X, LI S, et al. Mutations in NYX of individuals with high myopia, but without night blindness[J]. Molecular Vision, 2007, 13: 330-336.

    [23] [23] RATNAMALA U, LYLE R, RAWAL R, et al. Refinement of the X-linked nonsyndromic high-grade myopia locus MYP1 on Xq28 and exclusion of 13 known positional candidate genes by direct sequencing[J]. Investigative Ophthalmology & Visual Science, 2011, 52(9): 6814-6819.

    [24] [24] SHI Y, LI Y, ZHANG D, et al. Exome sequencing identifies ZNF644 mutations in high myopia[J]. PLoS Genetics, 2011, 7(6): e1002084.

    [25] [25] GUO H, JIN X, ZHU T, et al. SLC39A5 mutations interfering with the BMP/TGF-β pathway in non-syndromic high myopia[J]. Journal of Medical Genetics, 2014, 51(8): 518-525.

    [26] [26] GUO H, TONG P, LIU Y, et al. Mutations of P4HA2 encoding prolyl 4-hydroxylase 2 are associated with nonsyndromic high myopia[J]. Genetics in Medicine, 2015, 17(4): 300-306.

    [27] [27] TIAN Q, TONG P, CHEN G, et al. GLRA2 gene mutations cause high myopia in humans and mice[J]. Journal of Medical Genetics, 2022. DOI:?10.1136/jmedgenet-2022-108425.

    [28] [28] YIP S P, LI C C, YIU W C, et al. A novel missense mutation in the NYX gene associated with high myopia[J]. Ophthalmic And Physiological Optics, 2013, 33(3): 346-353.

    [29] [29] PUSCH C M, ZEITZ C, BRANDAU O, et al. The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein[J]. Nature Genetics, 2000, 26(3): 324-327.

    [30] [30] BECH-HANSEN N T, NAYLOR M J, MAYBAUM T A, et al. Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness[J]. Nature Genetics, 2000, 26(3): 319-323.

    [31] [31] CAO Y, POSOKHOVA E, MARTEMYANOV K A. TRPM1 forms complexes with nyctalopin in vivo and accumulates in postsynaptic compartment of ON-bipolar neurons in mGluR6-dependent manner[J]. Journal of Neuroscience, 2011, 31(32): 11521-11526.

    [32] [32] Scanga H L, Liasis A, Pihlblad M S, et al. NYX-related congenital stationary night blindness in two siblings due to probable maternal germline mosaicism[J]. Ophthalmic Genetics, 2021, 42(5): 588-592.

    [33] [33] De Silva S R, Arno G, Robson A G,?et al. The X-linked retinopathies: physiological insights, pathogenic mechanisms, phenotypic features and novel therapies[J]. Progress in Retinal and Eye Resesrch, 2021, 82: 100898.

    [34] [34] Hayashi T, Murakami Y, Mizobuchi K,??et al. Complete congenital stationary night blindness associated with a novel?NYX?variant (p.Asn216Lys) in middle-aged and older adult patients[J]. Ophthalmic Genetics, 2021, 42(4): 412-419.

    [35] [35] Kim H M, Joo K, Han J,?et al. Clinical and genetic characteristics of Korean congenital stationary night blindness patients[J]. Genes-basel,?2021, 12(6): 789.?

    [36] [36] ZHOU L, LI T, SONG X, et al. NYX mutations in four families with high myopia with or without CSNB1[J]. Molecular Vision, 2015, 21: 213-223.

    [37] [37] LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754-1760.

    [38] [38] LI H, HANDSAKER B, WYSOKER A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078-2079.

    [39] [39] KORESSAAR T, REMM M. Enhancements and modifications of primer design program Primer3[J]. Bioinformatics, 2007, 23(10): 1289-1291.

    [40] [40] Navarro Gonzalez J, Zweig A S, Speir M L, et al. The?UCSC?genome?browser?database: 2021 update[J]. Nucleic Acids Research, 2021, 49(D1): D1046-D1057.

    [41] [41] SPEIR M L, ZWEIG A S, ROSENBLOOM K R, et al. The UCSC genome browser database: 2016 update[J]. Nucleic Acids Research, 2016, 44(D1): D717-D725.

    [42] [42] ADZHUBEI I, JORDAN D M, SUNYAEV S R. Predicting functional effect of human missense mutations using PolyPhen-2[J]. Current Protocols in Human Genetics, 2013, Chapter 7: Unit 7.20.

    [43] [43] KUMAR P, HENIKOFF S, NG P C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm[J]. Nature Protocols, 2009, 4(7): 1073-1081.

    [44] [44] SCHWARZ J M, R?DELSPERGER C, SCHUELKE M, et al. Mutation taster evaluates disease-causing potential of sequence alterations[J]. Nature Methods, 2010, 7(8): 575-576.

    [45] [45] HOCKING A M, SHINOMURA T, MCQUILLAN D J. Leucine-rich repeat glycoproteins of the extracellular matrix[J]. Matrix Biology, 1998, 17(1): 1-19.

    [46] [46] KOBE B, DEISENHOFER J. The leucine-rich repeat: a versatile binding motif[J]. Trends in Biochemical Sciences, 1994, 19(10): 415-421.

    [47] [47] SIEVING P A, RICHARDS J E, NAARENDORP F, et al. Dark-light: model for nightblindness from the human rhodopsin Gly-90→Asp mutation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(3): 880-884.

    [48] [48] NEIDHARDT J, BARTHELMES D, FARAHMAND F, et al. Different amino acid substitutions at the same position in rhodopsin lead to distinct phenotypes[J]. Investigative Ophthalmology & Visual Science, 2006, 47(4): 1630-1635.

    [49] [49] BELLUS G A, SPECTOR E B, SPEISER P W, et al. Distinct missense mutations of the FGFR3 lys650 codon modulate receptor kinase activation and the severity of the skeletal dysplasia phenotype[J]. American Journal of Human Genetics, 2000, 67(6): 1411-1421.

    [50] [50] KITOH H, BRODIE S G, KUPKE K G, et al. Lys650Met substitution in the tyrosine kinase domain of the fibroblast growth factor receptor gene causes thanatophoric dysplasia Type I. Mutations in brief no. 199. Online[J]. Human Mutation, 1998, 12(5): 362-363.

    [51] [51] TAVORMINA P L, SHIANG R, THOMPSON L M, et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3[J]. Nature Genetics, 1995, 9(3): 321-328.

    [52] [52] SPIELMAN R S, BASTONE L A, BURDICK J T, et al. Common genetic variants account for differences in gene expression among ethnic groups[J]. Nature Genetics, 2007, 39(2): 226-231.

    Tools

    Get Citation

    Copy Citation Text

    LIU Shuyan, DENG Nini, CHEN Jinmao, TIAN Qi, PENG Fenglan. Exome Sequencing Identification of a Novel Missense Mutation in NYX in a Family with High Myopia[J]. Acta Laser Biology Sinica, 2022, 31(4): 361

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 12, 2022

    Accepted: --

    Published Online: Sep. 26, 2022

    The Author Email: Fenglan PENG (26901894@qq.com)

    DOI:10.3969/j.issn.1007-7146.2022.04.010

    Topics