Laboratory Animal and Comparative Medicine, Volume. 45, Issue 3, 290(2025)
Advances in Mouse Models of Amyotrophic Lateral Sclerosis
[1] [1] WANG H, GUAN L P, DENG M. Recent progress of the genetics of amyotrophic lateral sclerosis and challenges of gene therapy[J]. Front Neurosci, 2023, 17: 1170996. DOI: 10.3389/fnins.2023.1170996.
[2] [2] BROWN R H, AL-CHALABI A. Amyotrophic lateral sclerosis[J]. N Engl J Med, 2017, 377(2): 162-172. DOI: 10.1056/nejmra1603471.
[3] [3] MEAD R J, SHAN N, JOSEPH REISER H J, et al. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation[J]. Nat Rev Drug Discov, 2023, 22(3): 185-212. DOI: 10.1038/s41573-022-00612-2.
[4] [4] XU L, CHEN L, WANG S F, et al. Incidence and prevalence of amyotrophic lateral sclerosis in urban China: a national population-based study[J]. J Neurol Neurosurg Psychiatry, 2020, 91(5): 520-525. DOI: 10.1136/jnnp-2019-322317.
[5] [5] FELDMAN E L, GOUTMAN S A, PETRI S, et al. Amyotrophic lateral sclerosis[J]. Lancet, 2022, 400(10360): 1363-1380. DOI: 10.1016/s0140-6736(22)01272-7.
[6] [6] ZHU L H, LI S H, LI X J, et al. Pathological insights from amyotrophic lateral sclerosis animal models: comparisons, limitations, and challenges[J]. Transl Neurodegener, 2023, 12 (1): 46. DOI: 10.1186/s40035-023-00377-7.
[7] [7] LI C Y, YANG T M, OU R W, et al. Genome-wide genetic links between amyotrophic lateral sclerosis and autoimmune diseases[J]. BMC Med, 2021, 19(1): 27. DOI: 10.1186/s12916-021-01903-y.
[8] [8] KIM G, GAUTIER O, TASSONI-TSUCHIDA E, et al. ALS genetics: gains, losses, and implications for future therapies[J]. Neuron, 2020, 108(5): 822-842. DOI: 10.1016/j.neuron.2020.08.022.
[9] [9] AL-CHALABI A, FANG F, HANBY M F, et al. An estimate of amyotrophic lateral sclerosis heritability using twin data[J]. J Neurol Neurosurg Psychiatry, 2010, 81(12): 1324-1326. DOI: 10.1136/jnnp.2010.207464.
[10] [10] YOUNGER D S, BROWN R H Jr. Amyotrophic lateral sclerosis.[J]. Handb Clin Neurol, 2023, 196: 203-229. DOI: 10.1016/B978-0-323-98817-9.00031-4.
[11] [11] WEI Q Q, CHEN X P, CHEN Y P, et al. Unique characteristics of the genetics epidemiology of amyotrophic lateral sclerosis in China[J]. Sci China Life Sci, 2019, 62(4): 517-525. DOI: 10.1007/s11427-018-9453-x.
[12] [12] ROSEN D R, SIDDIQUE T, PATTERSON D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis[J]. Nature, 1993, 364 (6415): 59-62. DOI: 10.1038/362059a0.
[13] [13] PEGGION C, SCALCON V, MASSIMINO M L, et al. SOD1 in ALS: Taking stock in pathogenic mechanisms and the role of glial and muscle cells[J]. Antioxidants, 2022, 11(4): 614. DOI: 10.3390/antiox11040614.
[14] [14] LI H F, WU Z Y. Genotype-phenotype correlations of amyotrophic lateral sclerosis[J]. Transl Neurodegener, 2016, 5: 3. DOI: 10.1186/s40035-016-0050-8.
[15] [15] ZOU Z Y, ZHOU Z R, CHE C H, et al. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis[J]. J Neurol Neurosurg Psychiatry, 2017, 88(7): 540-549. DOI: 10.1136/jnnp-2016-315018.
[16] [16] GURNEY M E, PU H, CHIU A Y, et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation[J]. Science, 1994, 264(5166): 1772-1775. DOI: 10.1126/science.8209258.
[17] [17] TODD T W, PETRUCELLI L. Modelling amyotrophic lateral sclerosis in rodents[J]. Nat Rev Neurosci, 2022, 23(4): 231-251. DOI: 10.1038/s41583-022-00564-x.
[18] [18] CIURO M, SANGIORGIO M, LEANZA G, et al. A meta-analysis study of SOD1-mutant mouse models of als to analyse the determinants of disease onset and progression[J]. Int J Mol Sci, 2022, 24(1): 216-232. DOI: 10.3390/ijms24010216.
[19] [19] ACEVEDO-AROZENA A, KALMAR B, ESSA S, et al. A comprehensive assessment of the SOD1G93A low-copy transgenic mouse, which models human amyotrophic lateral sclerosis[J]. Dis Model Mech, 2011, 4(5): 686-700. DOI: 10.1242/dmm.007237.
[20] [20] LINO M M, SCHNEIDER C, CARONI P. Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease[J]. J Neurosci, 2002, 22(12): 4825-4832. DOI: 10.1523/JNEUROSCI.22-12-04825.2002.
[21] [21] SAITOH Y, TAKAHASHI Y. Riluzole for the treatment of amyotrophic lateral sclerosis[J]. Neurodegener Dis Manag, 2020, 10(6): 343-355. DOI: 10.2217/nmt-2020-0033.
[22] [22] BROOKS B R, BERRY J D, CIEPIELEWSKA M, et al. Intravenous edaravone treatment in ALS and survival: an exploratory, retrospective, administrative claims analysis[J]. EClinicalMedicine, 2022, 52: 101590. DOI: 10.1016/j.eclinm.2022.101590.
[23] [23] MCCAMPBELL A, COLE T, WEGENER A J, et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models[J]. J Clin Invest, 2018, 128(8): 3558-3567. DOI: 10.1172/JCI99081.
[24] [24] MACKENZIE I R A, BIGIO E H, INCE P G, et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations[J]. Ann Neurol, 2007, 61(5): 427-434. DOI: 10.1002/ana.21147.
[25] [25] DE GIORGIO F, MADURO C, FISHER E M C, et al. Transgenic and physiological mouse models give insights into different aspects of amyotrophic lateral sclerosis[J]. Dis Model Mech, 2019, 12(1): dmm037424. DOI: 10.1242/dmm.037424.
[26] [26] TSAI K J, YANG C H, FANG Y H, et al. Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U[J]. J Exp Med, 2010, 207(8): 1661-1673. DOI: 10.1084/jem.20092164.
[27] [27] WATANABE S, OIWA K, MURATA Y, et al. ALS-linked TDP-43M337V knock-in mice exhibit splicing deregulation without neurodegeneration[J]. Mol Brain, 2020, 13(1): 8. DOI: 10.1186/s13041-020-0550-4.
[28] [28] LANZNASTER D, VEYRAT-DUREBEX C, VOURC'H P, et al. Metabolomics: a tool to understand the impact of genetic mutations in amyotrophic lateral sclerosis[J]. Genes, 2020, 11 (5): 537. DOI: 10.3390/genes11050537.
[29] [29] LUTZ C. Mouse models of ALS: past, present and future[J]. Brain Res, 2018, 1693(Pt A): 1-10. DOI: 10.1016/j.brainres.2018.03.024.
[30] [30] CHAN G, VAN HUMMEL A, VAN DER HOVEN J, et al. Neurodegeneration and motor deficits in the absence of astrogliosis upon transgenic mutant TDP-43 expression in mature mice[J]. Am J Pathol, 2020, 190(8): 1713-1722. DOI: 10.1016/j.ajpath.2020.04.009.
[31] [31] ARNOLD E S, LING S C, HUELGA S C, et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43[J]. Proc Natl Acad Sci USA, 2013, 110(8): E736-E745. DOI: 10.1073/pnas.1222809110.
[32] [32] WILS H, KLEINBERGER G, JANSSENS J, et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration[J]. Proc Natl Acad Sci USA, 2010, 107(8): 3858-3863. DOI: 10.1073/pnas.0912417107.
[33] [33] HERDEWYN S, CIRILLO C, VAN DEN BOSCH L, et al. Prevention of intestinal obstruction reveals progressive neurodegeneration in mutant TDP-43 (A315T) mice[J]. Mol Neurodegener, 2014, 9: 24. DOI: 10.1186/1750-1326-9-24.
[34] [34] SWARUP V, PHANEUF D, BAREIL C, et al. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments[J]. Brain, 2011, 134(Pt 9): 2610-2626. DOI: 10.1093/brain/awr159.
[35] [35] MEJZINI R, FLYNN L L, PITOUT I L, et al. ALS genetics, mechanisms, and therapeutics: where are we now?[J]. Front Neurosci, 2019, 13: 1310. DOI: 10.3389/fnins.2019.01310.
[36] [36] CHEN C, DING X F, AKRAM N, et al. Fused in sarcoma: properties, self-assembly and correlation with neurodegenerative diseases[J]. Molecules, 2019, 24(8): 1622. DOI: 10.3390/molecules24081622.
[37] [37] PELAEZ M C, DESMEULES A, GELON P A, et al. Neuronal dysfunction caused by FUSR521G promotes ALS-associated phenotypes that are attenuated by NF-B inhibition[J]. Acta Neuropathol Commun, 2023, 11(1): 182. DOI: 10.1186/s40478-023-01671-1.
[38] [38] QIU H Y, LEE S, SHANG Y L, et al. ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects[J]. J Clin Invest, 2021, 131(7): e149564. DOI: 10.1172/JCI149564.
[39] [39] MITCHELL J C, MCGOLDRICK P, VANCE C, et al. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion[J]. Acta Neuropathol, 2013, 125(2): 273-288. DOI: 10.1007/s00401-012-1043-z.
[40] [40] SHIIHASHI G, ITO D, YAGI T, et al. Mislocated FUS is sufficient for gain-of-toxic-function amyotrophic lateral sclerosis phenotypes in mice[J]. Brain, 2016, 139(Pt 9): 2380-2394. DOI: 10.1093/brain/aww161.
[41] [41] SHIIHASHI G, ITO D, ARAI I, et al. Dendritic homeostasis disruption in a novel frontotemporal dementia mouse model expressing cytoplasmic fused in sarcoma[J]. EBioMedicine, 2017, 24: 102-115. DOI: 10.1016/j.ebiom.2017.09.005.
[42] [42] DEBRAY S, RACE V, CRABB V, et al. Frequency of C9orf72 repeat expansions in amyotrophic lateral sclerosis: a Belgian cohort study[J]. Neurobiol Aging, 2013, 34(12): 2890.e7-2892890.e12. DOI: 10.1016/j.neurobiolaging.2013.06.009.
[43] [43] PARAMESWARAN J, ZHANG N, BRAEMS E, et al. Antisense, but not sense, repeat expanded RNAs activate PKR/eIF2 -dependent ISR inC9ORF72FTD/ALS[J]. elife, 2023, 12: e85902. DOI: 10.7554/eLife.85902.
[44] [44] BABI LEKO M, UPUNSKI V, KIRINCICH J, et al. Molecular mechanisms of neurodegeneration related toC9orf72hexanucleotide repeat expansion[J]. Behav Neurol, 2019, 2019: 2909168. DOI: 10.1155/2019/2909168.
[45] [45] NGUYEN H P, VAN BROECKHOVEN C, VAN DER ZEE J. ALS genes in the genomic era and their implications for FTD[J]. Trends Genet, 2018, 34(6): 404-423. DOI: 10.1016/j.tig.2018.03.001.
[46] [46] BECKERS J, THARKESHWAR A K, VAN DAMME P. C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels[J]. Autophagy, 2021, 17(11): 3306-3322. DOI: 10.1080/15548627.2021.1872189.
[47] [47] LIU Y J, PATTAMATTA A, ZU T, et al. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD[J]. Neuron, 2016, 90(3): 521-534. DOI: 10.1016/j.neuron.2016.04.005.
[48] [48] NGUYEN L, MONTRASIO F, PATTAMATTA A, et al. Antibody therapy targeting RAN proteins rescues C9 ALS/FTD phenotypes in C9orf72 mouse model[J]. Neuron, 2020, 105(4): 645-662.e11. DOI: 10.1016/j.neuron.2019.11.007.
[49] [49] MORDES D A, MORRISON B M, AMENT X H, et al. Absence of survival and motor deficits in 500 repeat C9ORF72 BAC mice[J]. Neuron, 2020, 108(4): 775-783.e4. DOI: 10.1016/j.neuron.2020.08.009.
[50] [50] NGUYEN L, LABOISSONNIERE L A, GUO S, et al. Survival and motor phenotypes in FVB C9-500 ALS/FTD BAC transgenic mice reproduced by multiple labs[J]. Neuron, 2020, 108(4): 784-796.e3. DOI: 10.1016/j.neuron.2020.09.009.
[51] [51] RICH K A, PINO M G, YALVAC M E, et al. Impaired motor unit recovery and maintenance in a knock-in mouse model of ALS-associated Kif5a variant[J]. Neurobiol Dis, 2023, 182: 106148. DOI: 10.1016/j.nbd.2023.106148.
[52] [52] GUO L, MAO Q L, HE J, et al. Disruption of ER ion homeostasis maintained by an ER anion channel CLCC1 contributes to ALS-like pathologies[J]. Cell Res, 2023, 33(7): 497-515. DOI: 10.1038/s41422-023-00798-z.
[53] [53] ZHONG J, WANG C D, ZHANG D, et al.PCDHA9as a candidate gene for amyotrophic lateral sclerosis[J]. Nat Commun, 2024, 15(1): 2189. DOI: 10.1038/s41467-024-46333-5.
[54] [54] LPINE S, NAULEAU-JAVAUDIN A, DENEAULT E, et al. Homozygous ALS-linked mutations in TARDBP/TDP-43 lead to hypoactivity and synaptic abnormalities in human iPSC-derived motor neurons[J]. iScience, 2024, 27(3): 109166. DOI: 10.1016/j.isci.2024.109166.
[55] [55] WHITE M A, KIM E, DUFFY A, et al. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD[J]. Nat Neurosci, 2018, 21(4): 552-563. DOI: 10.1038/s41593-018-0113-5.
[56] [56] EBSTEIN S Y, YAGUDAYEVA I, SHNEIDER N A. Mutant TDP-43 causes early-stage dose-dependent motor neuron degeneration in a TARDBP knockin mouse model of ALS[J]. Cell Rep, 2019, 26(2): 364-373.e4. DOI: 10.1016/j.celrep.2018.12.045.
[57] [57] HUANG S L, WU L S, LEE M, et al. A robust TDP-43 knock-in mouse model of ALS[J]. Acta Neuropathol Commun, 2020, 8 (1): 3. DOI: 10.1186/s40478-020-0881-5.
[58] [58] KOROBEYNIKOV V A, LYASHCHENKO A K, BLANCO-REDONDO B, et al. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis[J]. Nat Med, 2022, 28(1): 104-116. DOI: 10.1038/s41591-021-01615-z.
[59] [59] DEVOY A, KALMAR B, STEWART M, et al. Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in 'FUSDelta14' knockin mice[J]. Brain, 2017, 140 (11): 2797-2805. DOI: 10.1093/brain/awx248.
[60] [60] DENG Z Q, LIM J, WANG Q, et al. ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway[J]. Autophagy, 2020, 16(5): 917-931. DOI: 10.1080/15548627.2019.1644076.
[61] [61] BURBERRY A, WELLS M F, LIMONE F, et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria[J]. Nature, 2020, 582(7810): 89-94. DOI: 10.1038/s41586-020-2288-7.
[62] [62] ZHU Q, JIANG J, GENDRON T F, et al. Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72[J]. Nat Neurosci, 2020, 23(5): 615-624. DOI: 10.1038/s41593-020-0619-5.
[63] [63] POLLOCK N, MACPHERSON P C, STAUNTON C A, et al. Deletion ofSod1in motor neurons exacerbates age-related changes in axons and neuromuscular junctions in mice[J]. eNeuro, 2023, 10(3): ENEURO.0086-22.2023. DOI: 10.1523/ENEURO.0086-22.2023.
[64] [64] SHEFNER J M, REAUME A G, FLOOD D G, et al. Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy[J]. Neurology, 1999, 53(6): 1239-1246. DOI: 10.1212/wnl.53.6.1239.
[65] [65] YOSHIHARA D, FUJIWARA N, KITANAKA N, et al. The absence of the SOD1 gene causes abnormal monoaminergic neurotransmission and motivational impairment-like behavior in mice[J]. Free Radic Res, 2016, 50(11): 1245-1256. DOI: 10.1080/10715762.2016.1234048.
[66] [66] KRAEMER B C, SCHUCK T, WHEELER J M, et al. Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis[J]. Acta Neuropathol, 2010, 119(4): 409-419. DOI: 10.1007/s00401-010-0659-0.
[67] [67] KINO Y, WASHIZU C, KUROSAWA M, et al. FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis[J]. Acta Neuropathol Commun, 2015, 3: 24. DOI: 10.1186/s40478-015-0202-6.
[68] [68] KURASHIGE T, KURAMOCHI M, OHSAWA R, et al. Optineurin defects cause TDP43-pathology with autophagic vacuolar formation[J]. Neurobiol Dis, 2021, 148: 105215. DOI: 10.1016/j.nbd.2020.105215.
[69] [69] GURFINKEL Y, POLAIN N, SONAR K, et al. Functional and structural consequences of TBK1 missense variants in frontotemporal lobar degeneration and amyotrophic lateral sclerosis[J]. Neurobiol Dis, 2022, 174: 105859. DOI: 10.1016/j.nbd.2022.105859.
[70] [70] RAMESH BABU J, LAMAR SEIBENHENER M, PENG J M, et al. Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration[J]. J Neurochem, 2008, 106(1): 107-120. DOI: 10.1111/j.1471-4159.2008.05340.x.
[71] [71] CHEW J, COOK C, GENDRON T F, et al. Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy[J]. Mol Neurodegener, 2019, 14(1): 9. DOI: 10.1186/s13024-019-0310-z.
[72] [72] GENDRON T F, BIENIEK K F, ZHANG Y J, et al. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS[J]. Acta Neuropathol, 2013, 126 (6): 829-844. DOI: 10.1007/s00401-013-1192-8.
[73] [73] COOK C N, WU Y W, ODEH H M, et al.C9orf72poly(GR) aggregation induces TDP-43 proteinopathy[J]. Sci Transl Med, 2020, 12(559): eabb3774. DOI: 10.1126/scitranslmed.abb3774.
[74] [74] ZHANG Y J, GENDRON T F, GRIMA J C, et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins[J]. Nat Neurosci, 2016, 19(5): 668-677. DOI: 10.1038/nn.4272.
[75] [75] YAN S, WANG C E, WEI W J, et al. TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain[J]. Hum Mol Genet, 2014, 23(10): 2678-2693. DOI: 10.1093/hmg/DDT662.
[76] [76] TSUBOGUCHI S, NAKAMURA Y, ISHIHARA T, et al. TDP-43 differentially propagates to induce antero- and retrograde degeneration in the corticospinal circuits in mouse focal ALS models[J]. Acta Neuropathol, 2023, 146(4): 611-629. DOI: 10.1007/s00401-023-02615-8.
[77] [77] JACKSON K L, DAYTON R D, DEVERMAN B E, et al. Better targeting, better efficiency for wide-scale neuronal transduction with the synapsin promoter and AAV-PHP. B[J]. Front Mol Neurosci, 2016, 9: 116. DOI: 10.3389/fnmol.2016.00116.
[78] [78] JOSEPH BLOOM A, MAO X R, STRICKLAND A, et al. Constitutively active SARM1 variants that induce neuropathy are enriched in ALS patients[J]. Mol Neurodegener, 2022, 17 (1): 1-15. DOI: 10.1186/s13024-021-00511-x.
[79] [79] VAN HUMMEL A, SABALE M, PRZYBYLA M, et al. TDP-43 pathology and functional deficits in wild-type and ALS/FTD mutant cyclin F mouse models[J]. Neuropathol Appl Neurobiol, 2023, 49(2): e12902. DOI: 10.1111/nan.12902.
[80] [80] YIN P, BAI D Z, DENG F Y, et al. SQSTM1-mediated clearance of cytoplasmic mutant TARDBP/TDP-43 in the monkey brain[J]. Autophagy, 2022, 18(8): 1955-1968. DOI: 10.1080/15548627.2021.2013653.
[81] [81] GRAFFMO K S, FORSBERG K, BERGH J, et al. Expression of wild-type human superoxide dismutase-1 in mice causes amyotrophic lateral sclerosis[J]. Hum Mol Genet, 2013, 22(1): 51-60. DOI: 10.1093/hmg/dds399.
[82] [82] ANDREAS JONSSON P, GRAFFMO K S, BRNNSTRM T, et al. Motor neuron disease in mice expressing the wild type-like D90A mutant superoxide dismutase-1[J]. J Neuropathol Exp Neurol, 2006, 65(12): 1126-1136. DOI: 10.1097/01.jnen.0000248545.36046.3c.
[83] [83] QUARTA E, BRAVI R, SCAMBI I, et al. Increased anxiety-like behavior and selective learning impairments are concomitant to loss of hippocampal interneurons in the presymptomatic SOD1(G93A) ALS mouse model[J]. J Comp Neurol, 2015, 523(11): 1622-1638. DOI: 10.1002/cne.23759.
[84] [84] LPEZ-ERAUSKIN J, TADOKORO T, BAUGHN M W, et al. ALS/FTD-linked mutation in FUS suppresses intra-axonal protein synthesis and drives disease without nuclear loss-of-function of FUS[J]. Neuron, 2020, 106(2): 354. DOI: 10.1016/j.neuron.2020.04.006.
[85] [85] PATTAMATTA A, NGUYEN L, OLAFSON H R, et al. Repeat length increases disease penetrance and severity in C9orf72 ALS/FTD BAC transgenic mice[J]. Hum Mol Genet, 2021, 29 (24): 3900-3918. DOI: 10.1093/hmg/ddaa279.
[86] [86] KOROBEYNIKOV V A, LYASHCHENKO A K, BLANCO-REDONDO B, et al. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis[J]. Nat Med, 2022, 28(1): 104-116. DOI: 10.1038/s41591-021-01615-z.
[87] [87] PICCHIARELLI G, DEMESTRE M, ZUKO A, et al. FUS-mediated regulation of acetylcholine receptor transcription at neuromuscular junctions is compromised in amyotrophic lateral sclerosis[J]. Nat Neurosci, 2019, 22(11): 1793-1805. DOI: 10.1038/s41593-019-0498-9.
[88] [88] MILIOTO C, CARCOL M, GIBLIN A, et al. PolyGR and polyPR knock-in mice reveal a conserved neuroprotective extracellular matrix signature in C9orf72 ALS/FTD neurons[J]. Nat Neurosci, 2024, 27(4): 643-655. DOI: 10.1038/s41593-024-01589-4.
[89] [89] ZHANG Y J, GENDRON T F, EBBERT M T W, et al. Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis[J]. Nat Med, 2018, 24(8): 1136-1142. DOI: 10.1038/s41591-018-0071-1.
Get Citation
Copy Citation Text
LUO Lianlian, YUAN Yanchun, WANG Junling, SHI Guangsen. Advances in Mouse Models of Amyotrophic Lateral Sclerosis[J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 290
Category:
Received: Nov. 4, 2024
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: SHI Guangsen (shiguangsen@zidd.ac.cn)