Acta Optica Sinica, Volume. 36, Issue 1, 130003(2016)
Independent Component Feature Extraction Method for Hyperspectral Image Based on Negentropy Statistics in Moving Windows
[1] [1] Feng Weiyi, Chen Qian, He Weiji, et al.. A defogging method based on hyperspectral unmixing[J]. Acta Optica Sinica, 2015, 35(1): 0110002.
[2] [2] Liu Jin, Si Fuqi, Zhou Haijin, et al.. Estimation of sulfur dioxide emission from power plant using imaging differential optical absorption spectroscopy technique[J]. Acta Optica Sinica, 2015, 35(6): 0630003.
[5] [5] Reed I S, Yu X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(10): 1760-1770.
[6] [6] Yu X, Hoff L E, Reed I S, et al.. Automatic target detection and recognition in multiband imagery: A unified ML detection and estimation approach[J]. IEEE Transactions on Image Processing, 1997, 6(1): 143-156.
[7] [7] Wang Yulei, Zhao Chunhui, Wang Jianghong. Anomaly detection based on low probability detection for hyperspectral image[J]. Journal of Natural Science of Heilongjiang University, 2010, 27(3): 411-416.
[8] [8] Chang C, Chiang S. Anomaly detection and classification for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6): 1314-1325.
[9] [9] Zhou R, Ye M, Chen H. Apple bruise detect with hyperspectral imaging technique[J]. Chinese Optics Letters, 2014, 12(sl): s11101.
[10] [10] Cui Fangxiao, Fang Yonghua. Adaptive detection for pollutant gases based on orthogonal subspace projection[J]. Acta Optica Sinica, 2014, 34(7): 0730002.
[11] [11] Wang Xiaofei, Zhang Junping, Yan Qiujing, et al.. Target detection for hyperspectral image based on support vector data description[J]. Chinese J Lasers, 2014, 41(s1): s114003.
[13] [13] Ren H, Chang C. Automatic spectral target recognition in hyperspectral imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1232-1249.
[14] [14] Wang J, Chang C. Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2601-2616.
[15] [15] Hyvrinen A, Karhunen J, Oja E. Independent Component Analysis[M]. New York: John Wiley & Sons, 2001.
[16] [16] Wang J, Chang C. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1586-1600.
[17] [17] Chang C. Hyperspectral Data Processing Algorithm Design and Analysis[M]. New Jersey: John Wiley & Sons, 2013.
[18] [18] Chen J, Richard C, Honeine P. Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinear-fluctuation model[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 480-492.
Get Citation
Copy Citation Text
Zhu Yuanyuan, Gao Jiaobo, Gao Zedong. Independent Component Feature Extraction Method for Hyperspectral Image Based on Negentropy Statistics in Moving Windows[J]. Acta Optica Sinica, 2016, 36(1): 130003
Category: Spectroscopy
Received: Jun. 25, 2015
Accepted: --
Published Online: Dec. 31, 2015
The Author Email: Yuanyuan Zhu (zhuyuanme@126.com)