Chinese Journal of Lasers, Volume. 49, Issue 6, 0608003(2022)
Electric Field Enhancement for Hybrid Structure Containing Silver Grating and Silver Nanoparticles
[1] Reilly T H, Chang S H, Corbman J D et al. Quantitative evaluation of plasmon enhanced Raman scattering from nanoaperture arrays[J]. The Journal of Physical Chemistry C, 111, 1689-1694(2007).
[2] Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications[J]. Angewandte Chemie, 53, 4756-4795(2014).
[3] Kleinman S L, Frontiera R R, Henry A I et al. Creating, characterizing, and controlling chemistry with SERS hot spots[J]. Physical Chemistry Chemical Physics, 15, 21-36(2013).
[4] Wu C F, Cai C L, Yang P F et al. An atom-induced situ-growth method for constructing a highly sensitive and reproducible large area SERS substrate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 545, 205-211(2018).
[5] Xing H J, Zhu Y, Zhang J. Raman enhanced properties of silver/graphene/silver composite structure prepared by one-step method[J]. Acta Optica Sinica, 40, 2124001(2020).
[6] Liu E W, Yang Z L, Han L J et al. Fabrication and SERS activity of Cu2O-Ag substrate by in situ growth[J]. Acta Optica Sinica, 41, 0724002(2021).
[7] Kneipp K, Moskovits M, Kneipp H[M]. Surface-enhanced Raman scattering(2006).
[8] McFarland A D, Young M A, Dieringer J A et al. Wavelength-scanned surface-enhanced Raman excitation spectroscopy[J]. The Journal of Physical Chemistry B, 109, 11279-11285(2005).
[9] le Ru E C, Blackie E, Meyer M et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. The Journal of Physical Chemistry C, 111, 13794-13803(2007).
[10] Oubre C, Nordlander P. Finite-difference time-domain studies of the optical properties of nanoshell dimers[J]. The Journal of Physical Chemistry B, 109, 10042-10051(2005).
[11] Wang H, Yao L, Mao X et al. Gold nanoparticle superlattice monolayer with tunable interparticle gap for surface-enhanced Raman spectroscopy[J]. Nanoscale, 11, 13917-13923(2019).
[12] Zhang J, Irannejad M, Cui B. Bowtie nanoantenna with single-digit nanometer gap for surface-enhanced Raman scattering (SERS)[J]. Plasmonics, 10, 831-837(2015).
[13] Banholzer M J, Millstone J E, Qin L D et al. Rationally designed nanostructures for surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 37, 885-897(2008).
[14] Bai W L, Guo B S, Cai L K et al. Simulation of light coupling enhancement and localization of transmission field via subwavelength metallic gratings[J]. Acta Physica Sinica, 58, 8021-8026(2009).
[15] Wang X X, Pang Z Y, Zhang D Y et al. SPs of composite structure of dielectric grating/metal film with silver cube[J]. Acta Photonica Sinica, 47, 1131001(2018).
[16] Xiao C, Chen Z B, Qin M Z et al. SERS characteristics analysis of composite Ag/SiO2 sinusoidal grating[J]. Chinese Optics, 12, 59-74(2019).
[17] Xiao Y F, Zhang W P, Huang H H et al. Influence of function of metal grating shape on surface plasmon resonance[J]. Chinese Journal of Lasers, 40, 1114001(2013).
[18] Gillibert R, Sarkar M, Bryche J F et al. Directional surface enhanced Raman scattering on gold nano-gratings[J]. Nanotechnology, 27, 115202(2016).
[19] Xiao C, Chen Z B, Qin M Z et al. SPPs characteristics of Ag/SiO2 sinusoidal nano-grating in SERS application[J]. Optik, 168, 650-659(2018).
[20] Chu Y Z, Crozier K B. Experimental study of the interaction between localized and propagating surface plasmons[J]. Optics Letters, 34, 244-246(2009).
[21] Chu Y Z, Banaee M G, Crozier K B. Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies[J]. ACS Nano, 4, 2804-2810(2010).
[22] Du L P, Zhang X J, Mei T et al. Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS[J]. Optics Express, 18, 1959-1965(2010).
[23] Zhou Y, Li X H, Ren X G et al. Designing and fabricating double resonance substrate with metallic nanoparticles-metallic grating coupling system for highly intensified surface-enhanced Raman spectroscopy[J]. The Analyst, 139, 4799-4805(2014).
[24] Zhou Y, Yang L B. A facile dtrategy on dynthesis of double-resonance substrate for SERS detection[J]. The Journal of Light Scattering, 26, 23-26(2014).
[25] Kalachyova Y, Mares D, Jerabek V et al. Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles[J]. Physical Chemistry Chemical Physics, 19, 14761-14769(2017).
[26] Li K G, Liu G J, Ghafoor S et al. Large-scale and uniform Raman substrate of coupled Ag grating with Ag triangle arrays[J]. Journal of Optics, 21, 035005(2019).
[27] Montgomery J M, Imre A, Welp U et al. SERS enhancements via periodic arrays of gold nanoparticles on silver film structures[J]. Optics Express, 17, 8669-8675(2009).
[28] Palik E[M]. Handbook of optical constants of solids II(1991).
[29] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972).
[30] Papanikolaou N. Optical properties of metallic nanoparticle arrays on a thin metallic film[J]. Physical Review B, 75, 5426(2007).
[31] Ghoshal A, Kik P G. Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays[J]. Journal of Applied Physics, 103, 113111(2008).
Get Citation
Copy Citation Text
Chunfang Wu, Hao Pan, Yechuan Zhu. Electric Field Enhancement for Hybrid Structure Containing Silver Grating and Silver Nanoparticles[J]. Chinese Journal of Lasers, 2022, 49(6): 0608003
Category: nonlinear optics
Received: Jul. 23, 2021
Accepted: Aug. 24, 2021
Published Online: Mar. 2, 2022
The Author Email: Wu Chunfang (wuchf@xatu.edu.cn)