Acta Optica Sinica, Volume. 45, Issue 8, 0810002(2025)

Method for Measuring Visibility on Foggy Highways Based on Depth Estimation of Encoder and Decoder

Peng Peng1,3、**, Yucheng Dong1, Jiachun Li2、*, and Yitao Yao1
Author Affiliations
  • 1School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi’an 710021, Shaanxi , China
  • 2Highway School, Chang’an University, Xi’an 710064, Shaanxi , China
  • 3Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710129, Shaanxi , China
  • show less
    Figures & Tables(16)
    Framework of foggy visibility estimation algorithm
    Image segmentation results. (a) Original images; (b) bright area masks; (c) segmentation results
    Video image segmentation. (a) Video image; (b) segmentation result
    Image of result of local entropy method
    Acquisition of transmission maps. (a) Video image; (b) dark channel image; (c) original transmission map; (d) optimized transmission map
    Encoder-decoder network based on DenseNet-169
    Mechanism of dense concat
    Improvement of Dense Block. (a) Dense Block; (b) Dense Block-B
    Structure of CBAM
    Visibility monitoring station. (a) Device deployment; (b) cloud platform monitoring
    Surveillance video frames captured at 5-minute interval. (a) 14:25; (b) 14:30; (c) 14:35; (d) 14:40; (e) 14:45; (f) 14:50; (g) 14:55; (h) 15:00; (i) 15:05; (j) 15:10; (k) 15:15; (l) 15:20
    Comparison of results based on different model methods. (a) Visibility curves; (b) error curves
    • Table 1. Comparison of performance of different depth estimation network algorithms

      View table

      Table 1. Comparison of performance of different depth estimation network algorithms

      ModelARRMSE /mA/%
      δ is <1.25δ is <1.252δ is <1.253
      BTS0.1160.39081.084.186.7
      LapDepth0.1010.43284.184.885.6
      MonoDepth0.1090.44085.485.384.1
      CADepth0.1030.40885.786.085.1
      Lite-Mono0.0990.38987.986.585.5
      DenseNet-1690.0970.38588.686.585.4
    • Table 2. Comparison of network performance under different attention mechanisms

      View table

      Table 2. Comparison of network performance under different attention mechanisms

      ModelARRMSE /mA/%
      δ is <1.25δ is <1.252δ is <1.253
      DenseNet-1690.0970.38588.686.585.4
      Dense+CA0.0880.32387.490.189.2
      Dense+ECA0.0980.37992.986.887.3
      Dense+SSA0.0810.31086.388.990.3
      Dense+CBAM0.0820.30589.690.489.5
    • Table 3. Levels of visibility

      View table

      Table 3. Levels of visibility

      LevelQualitative descriptorVisibility
      1ExcellentV≥10 km
      2Good2 km≤V<10 km
      3Average1 km≤V<2 km
      4Poor500 m≤V<1 km
      5Bad50 m≤V<500 m
      6TerribleV<50 m
    • Table 4. Visibility estimation results of proposed method

      View table

      Table 4. Visibility estimation results of proposed method

      TimeFigureVisibility detectorProposed methodError
      Visibility /mLevelVisibility /mLevel
      14:25Fig. 11(a)6324573459
      14:30Fig. 11(b)6974615482
      14:35Fig. 11(c)5954646451
      14:40Fig. 11(d)6814716435
      14:45Fig. 11(e)7044629475
      14:50Fig. 11(f)6704587483
      14:55Fig. 11(g)6884615473
      15:00Fig. 11(h)5124459553
      15:05Fig. 11(i)79346834110
      15:10Fig. 11(j)6534721468
      15:15Fig. 11(k)8344736498
      15:20Fig. 11(l)8604771489
    Tools

    Get Citation

    Copy Citation Text

    Peng Peng, Yucheng Dong, Jiachun Li, Yitao Yao. Method for Measuring Visibility on Foggy Highways Based on Depth Estimation of Encoder and Decoder[J]. Acta Optica Sinica, 2025, 45(8): 0810002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jan. 10, 2025

    Accepted: Feb. 27, 2025

    Published Online: Apr. 27, 2025

    The Author Email: Peng Peng (pengpeng@sust.edu.cn), Jiachun Li (zhs@chd.edu.cn)

    DOI:10.3788/AOS250467

    CSTR:32393.14.AOS250467

    Topics