Water Purification Technology, Volume. 44, Issue 7, 1(2025)
Research Progress on UV-Based AOPs for ARGs Reduction in Water Environment
[1] [1] SHARMA V K, YU X, MCDONALD T J, et al. Elimination of antibiotic resistance genes and control of horizontal transfer risk by UV-based treatment of drinking water: A mini review[J]. Frontiers of Environmental Science & Engineering, 2019, 13(3). DOI: 10.1007/s11783-019-1122-7.
[2] [2] KHETAN S K, COLLINS T J. Human pharmaceuticals in the aquatic environment: A challenge to green chemistry[J]. Chemical Reviews, 2007, 107(6): 2319-2364.
[3] [3] LEE J, JEON J H, SHIN J, et al. Quantitative and qualitative changes in antibiotic resistance genes after passing through treatment processes in municipal wastewater treatment plants[J]. Science of the Total Environment, 2017, 605/606: 906-914. DOI: 10.1016/j.scitotenv.2017.06.250.
[4] [4] GUO C, WANG K, HOU S, et al. H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes[J]. Journal of Hazardous Materials, 2017, 323: 710-718. DOI: 10.1016/j.jhazmat.2016.10.041.
[5] [5] DU J, XU T, GUO X, et al. Characteristics and removal of antibiotics and antibiotic resistance genes in a constructed wetland from a drinking water source in the Yangtze River Delta[J]. Science of the Total Environment, 2022, 813: 152540. DOI: 10.1016/j.scitotenv.2021.152540.
[6] [6] CHENG X, XU J, SMITH G, et al. Metagenomic insights into dissemination of antibiotic resistance across bacterial genera in wastewater treatment[J]. Chemosphere, 2021, 271(3): 129563.
[9] [9] MARTIMIANO D P T, LINDO S F, GROSSELI G, et al. Using BiVO4/CuO-based photoelectrocatalyzer for 4-nitrophenol degradation[J]. Materials (Basel), 2020, 13(6). DOI: 10.3390/ma13061322.
[10] [10] HE H, ZHOU P, SHIMABUKU K K, et al. Degradation and deactivation of bacterial antibiotic resistance genes during exposure to free chlorine, monochloramine, chlorine dioxide, ozone, ultraviolet light, and hydroxyl radical[J]. Environmental Science & Technology, 2019, 53(4): 2013-2026.
[11] [11] HU Y, ZHANG T, JIANG L, et al. Removal of sulfonamide antibiotic resistant bacterial and intracellular antibiotic resistance genes by UVC-activated peroxymonosulfate[J]. Chemical Engineering Journal, 2019, 368: 888-895. DOI: 10.1016/j.cej.2019.02.207.
[12] [12] TRAVIS A, CHERNOVA O, CHERNOV V, et al. Antimicrobial drug discovery: Lessons of history and future strategies[J]. Expert Opinion on Drug Discovery, 2018, 13(11): 983-985.
[13] [13] ZHONG J, YANG B, GAO F, et al. Performance and mechanism in degradation of typical antibiotics and antibiotic resistance genes by magnetic resin-mediated UV-Fenton process[J]. Ecotoxicology and Environmental Safety, 2021, 227: 112908. DOI: 10.1016/j.ecoenv.2021.112908.
[15] [15] MOURA A, OLIVEIRA C, HENRIQUES I, et al. Broad diversity of conjugative plasmids in integron-carrying bacteria from wastewater environments[J]. FEMS Microbiology Letters, 2012, 330(2): 157-164.
[17] [17] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23): 7445-7450.
[18] [18] STOLL C, SIDHU J P, TIEHM A, et al. Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia[J]. Environmental Science & Technology, 2012, 46(17): 9716-9726.
[20] [20] XU L, OUYANG W, QIAN Y, et al. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems[J]. Environmental Pollution, 2016, 213: 119-126. DOI: 10.1016/j.envpol.2016.02.013.
[21] [21] ZHANG S, LIN W, YU X. Effects of full-scale advanced water treatment on antibiotic resistance genes in the Yangtze Delta area in China[J]. FEMS Microbiology Ecology, 2016, 92(5): fiw065.
[22] [22] MATASEJE L F, NEUMANN N, CRAGOB, et al. Characterization of cefoxitin-resistant Escherichia coli isolates from recreational beaches and private drinking water in Canada between 2004 and 2006[J]. Antimicrobial Agents and Chemotherapy, 2009, 53(7): 3126-3130.
[23] [23] HOU A, YANG D, MIAO J, et al. Chlorine injury enhances antibiotic resistance in Pseudomonas aeruginosa through over expression of drug efflux pumps[J]. Water Research, 2019, 156: 366-371. DOI: 10.1016/j.watres.2019.03.035.
[24] [24] LIU S S, QU H M, YANG D, et al. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant[J]. Water Research, 2018, 136: 131-136. DOI: 10.1016/j.watres.2018.02.036.
[27] [27] FREY S K, TOPP E, KHAN I U, et al. Quantitative Campylobacter spp., antibiotic resistance genes, and veterinary antibiotics in surface and ground water following manure application: Influence of tile drainage control[J]. Science of the Total Environment, 2015, 532: 138-153. DOI: 10.1016/j.scitotenv.2015.03.114.
[28] [28] SZCZEPANOWSKI R, LINKE B, KRAHNI I, et al. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics[J]. Microbiology (Reading), 2009, 155(Pt 7): 2306-2319.
[29] [29] HU Y, JIANG L, ZHANG T, et al. Occurrence and removal of sulfonamide antibiotics and antibiotic resistance genes in conventional and advanced drinking water treatment processes[J]. Journal of Hazardous Materials, 2018, 360: 364-372. DOI: 10.1016/j.jhazmat,2018.08.012.
[30] [30] YU Q L, FENG T S, YANG J W, et al. Seasonal distribution of antibiotic resistance genes in the Yellow River water and tap water, and their potential transmission from water to human[J]. Environmental Pollution, 2022, 292: 118304. DOI: 10.1016/j.envp01.2021.118304.
[31] [31] PROIA L, SCHILLER D V, SANCHEZ-MELSIO A, et al. Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers[J]. Environmental Pollution, 2016, 210: 121-128. DOI: 10.1016/j.envpol.2015.11.035.
[32] [32] CHEN J, LI W, ZHANG J, et al. Prevalence of antibiotic resistance genes in drinking water and biofilms: The correlation with the microbial community and opportunistic pathogens[J]. Chemosphere, 2020, 259: 127483. DOI: 10.1016/j.chemosphere.2020.127483.
[33] [33] HU Y, JIANG L, ZHANG T, et al. Occurrence and removal of sulfonamide antibiotics and antibiotic resistance genes in conventional and advanced drinking water treatment processes[J]. Journal of Hazardous Materials, 2018, 360: 364-372. DOI: 10.1016/j.jhazmat.2018.08.012.
[34] [34] BEN Y, HU M, ZHANG X, et al. Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water[J]. Water Research, 2020, 175: 115699. DOI: 10.1016/j.watres.2020.115699.
[37] [37] DAS D, BORDOLOI A, ACHARY M P, et al. Degradation and inactivation of chromosomal and plasmid encoded resistance genes/ARBs and the impact of different matrices on UV and UV/H2O2 based advanced oxidation process[J]. Science of the Total Environment, 2022, 833: 155205. DOI: 10.1016/j.scitotenv.2022.155205.
[38] [38] MENG X Q, LI F J, YI L, et al. Free radicals removing extracellular polymeric substances to enhance the degradation of intracellular antibiotic resistance genes in multi-resistantPseudomonas Putidaby UV/H2O2 and UV/peroxydisulfate disinfection processes[J]. Journal of Hazardous Materials, 2022, 430: 128502. DOI: 10.1016/j.jhazmat.2022.128502.
[39] [39] GAO R, YU M, XIE J, et al. Inactivation of vancomycin-resistantEnterococcus faecalisand degradation of intracellularvanBgene under exposure to UV and UV/H2O2[J]. Journal of Water Process Engineering, 2022, 49: 103004. DOI: 10.1016/j.jwpe.2022.103004.
[41] [41] FERRO G, GUARINO F, CASTIGLIONE S, et al. Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2 process[J]. Science of the Total Environment, 2016, 560/561: 29-35. DOI: 10.1016/j.scitotenv.2016.04.047.
[42] [42] NIHEMAITI M, YOON Y, HE H, et al. Degradation and deactivation of a plasmid-encoded extracellular antibiotic resistance gene during separate and combined exposures to UV254 and radicals[J]. Water Research, 2020, 182: 115921. DOI: 10.1016/j.watres.2020.115921.
[43] [43] AHMED Y, LU J, YUAN Z, et al. Efficient inactivation of antibiotic resistant bacteria and antibiotic resistance genes by photo-Fenton process under visible LED light and neutral pH[J]. Water Research, 2020, 179: 115878. DOI: 10.1016/j.watres.2020.115878.
[44] [44] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62. DOI: 10.1016/j.cej.2016.10.064.
[45] [45] ZHOU C S, WU J W, DONG LL, et al. Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate[J]. Journal of Hazardous Materials, 2020, 388: 122070. DOI: 10.1016/j.jhazmat.2020.122070.
[46] [46] AO X, SUN W, LI S, et al. Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: Influencing factors, degradation pathways, and toxicity evaluation[J]. Chemical Engineering Journal, 2019, 361: 1053-1062. DOI: 10.1016/j.cej.2018.12.133.
[47] [47] YAO S, HU Y, YE J, et al. Disinfection and mechanism of super-resistantAcinetobactersp. and the plasmid-encoded antibiotic resistance geneblaNDM-1 by UV/peroxymonosulfate[J]. Chemical Engineering Journal, 2022, 433: 133565. DOI: 10.1016/j.cej.2021.133565.
[48] [48] RODRGUEZ-CHUECA J, VARELLA DELLA GIUSTINA S, ROCHAJ, et al. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: Removal or persistence of antibiotics and antibiotic resistance genes?[J]. Science of the Total Environment, 2019, 652: 1051-1061. DOI: 10.1016/j.scitotenv.2018.10.223.
[49] [49] YIN R, LING L, SHANGC. Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources[J]. Water Research, 2018, 142: 452-458. DOI: 10.1016/j.watres.2018.06.018.
[50] [50] AHMED Y, LU J, YUAN Z, et al. Efficient inactivation of antibiotic resistant bacteria and antibiotic resistance genes by photo-Fenton process under visible LED light and neutral pH[J]. Water Research, 2020, 179: 115878. DOI: 10.1016/j.watres.2020.115878.
[51] [51] GHOSH S, CHEN Y, HU J. Application of UVC and UVC based advanced disinfection technologies for the inactivation of antibiotic resistance genes and elimination of horizontal gene transfer activities: Opportunities and challenges[J]. Chemical Engineering Journal, 2022, 450: 138234. DOI: 10.1016/j.cej.2022.138234.
[52] [52] LIU X, HU J Y. Effect of DNA sizes and reactive oxygen species on degradation of sulphonamide resistancesul1 genes by combined UV/free chlorine processes[J]. Journal of Hazardous Materials, 2020, 392: 122283. DOI: 10.1016/j.jhazmat.2020.122283.
[53] [53] ZHANG Y, ZHUANG Y, GENG J, et al. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection[J]. Science of the Total Environment, 2015, 512/513: 125-132. DOI: 10.1016/j.scitotenv.2015.01.028.
[54] [54] ZHANG T, HU Y, JIANG L, et al. Removal of antibiotic resistance genes and control of horizontal transfer risk by UV, chlorination and UV/chlorination treatments of drinking water[J]. Chemical Engineering Journal, 2019, 358: 589-597. DOI: 10.1016/j.cej.2018.09.218.
[55] [55] WANG W, XIE H, LI G, et al. Visible light-induced marine bacterial inactivation in seawater by anin situphoto-fenton system without additional oxidants: Implications for ballast water sterilization[J]. ACS ES&T Water, 2021, 1(6): 1483-1494.
[56] [56] ZHANG J, LI W, ZHANG X, et al. Combined applications of UV and chlorine on antibiotic resistance control: A critical review[J]. Environmental Research, 2024, 243: 117884. DOI: 10.1016/j.envres.2023.117884.
[57] [57] LIU F, ZHOU H, PAN Z, et al. Degradation of sulfamethoxazole by cobalt-nickel powder composite catalyst coupled with peroxymonosulfate: Performance, degradation pathways and mechanistic consideration[J]. Journal of Hazardous Materials, 2020, 400: 123322. DOI: 10.1016/j.jhazmat.2020.123322.
[58] [58] MICHAEL-KORDATOU I, KARAOLIA P, FATTA-KASSINOS D. The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban[J]. Water Research, 2018, 129: 208-230. DOI: 10.1016/j.watres.2017.10.007.
[59] [59] IOANNOU-TTOFA L, RAJ S, PRAKASH H, et al. Solar photo-Fenton oxidation for the removal of ampicillin, total cultivable and resistantE. coliand ecotoxicity from secondary-treated wastewater effluents[J]. Chemical Engineering Journal, 2019, 355: 91-102. DOI: 10.1016/j.cej.2018.08.057.
[60] [60] WANG J, CHEN X. Removal of antibiotic resistance genes (ARGs) in various wastewater treatment processes: An overview[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(4): 571-630.
[61] [61] O'DOWD K, PILLAI S C. Photo-fenton disinfection at near neutral pH: Process, parameter optimization and recent advances[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104063.
[62] [62] LIOU M J, LU M C, CHEN J N. Oxidation of explosives by Fenton and photo-Fenton processes[J]. Water Research, 2003, 37(13): 3172-3179.
[63] [63] ZAPATA A, VELEGRAKI T, REZJAS N, et al. Solar photo-Fenton treatment of pesticides in water: Effect of iron concentration on degradation and assessment of ecotoxicity and biodegradability[J]. Applied Catalysis B: Environmental, 2009, 88(3/4): 448-454. DOI: 10.1016/j.apcatb.2008.10.024.
[64] [64] ABELEDO-LAMEIRO M J, POLO-LPEZ M I, ARES-MAZS E, et al. Inactivation of the waterborne pathogenCryptosporidium parvumby photo-Fenton process under natural solar conditions[J]. Applied Catalysis B Environmental, 2019, 253: 341-347. DOI: 10.1016/j.apcatb.2019.04.049.
[65] [65] LI S, WU Y, ZHENG H, et al. Antibiotics degradation by advanced oxidation process (AOPs): Recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products[J]. Chemosphere, 2023, 311(Pt 2): 136977.
[66] [66] FIORENTINO A, ESTEBAN B, GARRIDO-CARDENAS J A, et al. Effect of solar photo-Fenton process in raceway pond reactors at neutral pH on antibiotic resistance determinants in secondary treated urban wastewater[J]. Journal of Hazardous Materials, 2019, 378: 120737. DOI: 10.1016/j.jhazmat.2019.06.014.
[67] [67] MICHAELA S G, MICHAEL-KORDATOUA I, BERETSOUA V G, et al. Solar photo-Fenton oxidation followed by adsorption on activated carbon for the minimisation of antibiotic resistance determinants and toxicity present in urban wastewater[J]. Applied Catalysis B: Environmental, 2019, 244: 871-880. DOI: 10.1016/j.apcatb.2018.12.030.
[68] [68] CORONADO J M, SORIA J, CONESA J C, et al. Photocatalytic inactivation ofLegionella pneumophilaand an aerobic bacteria consortium in water over TiO2/SiO2 fibres in a continuous reactor[J]. Topics in Catalysis, 2005, 35(3/4): 279-286. DOI: 10.1007/s11244-005-3835-z.
[69] [69] LIAO C, KUO S. Inactivation of bacteria by kaolinite photocatalysts in water[J]. Environmental Engineering Science, 2008, 25(1): 33-42.
[70] [70] REN S, BOO C, GUO N, et al. Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent[J]. Environmental Science & Technology, 2018, 52(15): 8666-8673.
[71] [71] PHAM T, LEE B. Cu doped TiO2/GF for photocatalytic disinfection ofEscherichia coliin bioaerosols under visible light irradiation: Application and mechanism[J]. Applied Surface Science, 2014, 296: 15-23. DOI: 10.1016/j.apsusc.2014.01.006.
[72] [72] XIAO X, MA X L, HAN X, et al. TiO2 photoexcitation promoted horizontal transfer of resistance genes mediated by phage transduction[J]. Science of the Total Environment, 2021, 760: 144040. DOI: 10.1016/j.scitotenv.2020.144040.
[73] [73] HAN X, LV P, WANG L, et al. Impact of nano-TiO2 on horizontal transfer of resistance genes mediated by filamentous phage transduction[J]. Environmental Science Nano, 2020(4): 1214-1224. DOI: 10.1039/C9EN01279F.
[74] [74] AUERBACH E A, SEYFRIED E E, MCMAHON K D. Tetracycline resistance genes in activated sludge wastewater treatment plants[J]. Water Research, 2007, 41(5): 1143-1151.
Get Citation
Copy Citation Text
JIANG Dekun, HE Guilin, ZHANG Linjing, LIU Baozhen, DU Zhenqi, WANG Yonglei. Research Progress on UV-Based AOPs for ARGs Reduction in Water Environment[J]. Water Purification Technology, 2025, 44(7): 1
Category:
Received: Sep. 26, 2024
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: WANG Yonglei (wyl1016@sdjzu.edu.cn)