Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 1, 187(2021)
Quantum dot-based white LEDs and their applications of smart lighting
[1] [1] WANG L, ZHANG H R, ZHOU X H, et al. A dual-emitting core-shell carbon dot-silica-phosphor composite for LED plant grow light [J]. RSC Advances, 2017, 7(27): 16662-16667.
[2] [2] POULET L, MASSA G D, MORROW R C, et al. Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation [J]. Life Sciences in Space Research, 2014, 2: 43-53.
[3] [3] HOLBERT E. Advanced solid state lighting for aes deep space hab project [R]. NASA Technical Reportss Server. NASA, 2015.
[4] [4] SAIDZHONOV B M, ZAYTSEV V B, BEREKCHIIAN M V, et al. Highly luminescent copper-doped ultrathin CdSe nanoplatelets for white-light generation [J]. Journal of Luminescence, 2020, 222: 117134.
[5] [5] VAN DER BOK J C, DEKKER D M, PEERLINGS M L J, et al. Luminescence line broadening of CdSe nanoplatelets and quantum dots for application in w-LEDs [J]. The Journal of Physical Chemistry C, 2020, 124(22): 12153-12160.
[6] [6] NAKAMURA S, FASOL G. The Blue Laser Diode: GaN Based Light Emitters and Lasers [M]. Berlin, Heidelberg: Springer, 1997.
[7] [7] PATTISON P M, TSAO J Y, BRAINARD G C, et al. LEDs for photons, physiology and food [J]. Nature, 2018, 563(7732): 493-500.
[8] [8] SCHUBERT E F, KIM J K. Solid-state light sources getting smart [J]. Science, 2005, 308(5726): 1274-1278.
[11] [11] JEONG B G, PARK Y S, CHANG J H, et al. Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking [J]. ACS Nano, 2016, 10(10): 9297-9305.
[12] [12] FAN X B, YU S, WANG X, et al. Susceptible surface sulfide regulates catalytic activity of CdSe quantum dots for hydrogen photogeneration [J]. Advanced Materials, 2019, 31(7): 1804872.
[13] [13] WANG J D, WANG X Y, TANG H S, et al. Ultrasensitive electrochemical detection of tumor cells based on multiple layer CdS quantum dots-functionalized polystyrene microspheres and graphene oxide-polyaniline composite [J]. Biosensors and Bioelectronics, 2018, 100: 1-7.
[14] [14] GUIDELLI E J, LIGNOS I, YOO J J, et al. Mechanistic insights and controlled synthesis of radioluminescent ZnSe quantum dots using a microfluidic reactor [J]. Chemistry of Materials, 2018, 30(23): 8562-8570.
[15] [15] WANG Y, WANG P P, WU Y, et al. A cathodic “signal-on” photoelectrochemical sensor for Hg2+detection based on ion-exchange with ZnS quantum dots [J]. Sensors and Actuators B: Chemical, 2018, 254: 910-915.
[16] [16] XU Z H, LI Y, LI J Z, et al. Formation of size-tunable and nearly monodisperse InP nanocrystals: chemical reactions and controlled synthesis [J]. Chemistry of Materials, 2019, 31(14): 5331-5341.
[17] [17] YAN L, SHEN X Y, ZHANG Y, et al. Near-infrared light emitting diodes using PbSe quantum dots [J]. RSC Advances, 2015, 5(67): 54109-54114.
[18] [18] REN Z W, SUN J K, LI H, et al. Bilayer PbS quantum dots for high-performance photodetectors [J]. Advanced Materials, 2017, 29(23): 1702055.
[19] [19] ALLEN P M, BAWENDI M G. Ternary Ⅰ-Ⅲ-Ⅵ quantum dots luminescent in the red to near-infrared [J]. Journal of the American Chemical Society, 2008, 130(29): 9240-9241.
[20] [20] MOLAEI M J. Carbon quantum dots and their biomedical and therapeutic applications: a review [J]. RSC Advances, 2019, 9(12): 6460-6481.
[21] [21] YIN W X, LIU X, ZHANG X Y, et al. Synthesis of tungsten disulfide and molybdenum disulfide quantum dots and their applications [J]. Chemistry of Materials, 2020, 32(11): 4409-4424.
[26] [26] KORTAN A R, HULL R, OPILA R L, et al. Nucleation and growth of CdSe on ZnS quantum crystallite seeds and vice versa, in inverse micelle media [J]. Journal of the American Chemical Society, 1990, 112(4): 1327-1332.
[27] [27] REISS P, PROTIRE M, LI L. Core/shell semiconductor nanocrystals [J]. Small, 2009, 5(2): 154-168.
[28] [28] BAE W K, CHAR K, HUR H, et al. Single-step synthesis of quantum dots with chemical composition gradients [J]. Chemistry of Materials, 2008, 20(2): 531-539.
[29] [29] TALAPIN D V, ROGACH A L, KORNOWSKI A, et al. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture [J]. Nano Letters, 2001, 1(4): 207-211.
[30] [30] REISS P, BLEUSE J, PRON A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion [J]. Nano Letters, 2002, 2(7): 781-784.
[31] [31] KIM S, FISHER B, EISLER H J, et al. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures [J]. Journal of the American Chemical Society, 2003, 125(38): 11466-11467.
[32] [32] IVANOV S A, PIRYATINSKI A, NANDA J, et al. Type-II Core/Shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties [J]. Journal of the American Chemical Society, 2007, 129(38): 11708-11719.
[33] [33] XIE R, ZHONG X, BASCH T. Synthesis, characterization, and spectroscopy of type-Ⅱ core/shell semiconductor nanocrystals with ZnTe cores [J]. Advanced Materials, 2005, 17(22): 2741-2745.
[34] [34] JANG E, KIM Y, WON Y H, et al. Environmentally friendly InP-based quantum dots for efficient wide color gamut displays [J]. ACS Energy Letters, 2020, 5(4): 1316-1327.
[35] [35] PARK J, KIM S W. CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence [J]. Journal of Materials Chemistry, 2011, 21(11): 3745-3750.
[36] [36] BAE W K, PADILHA L A, PARK Y S, et al. Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination [J]. ACS Nano, 2013, 7(4): 3411-3419.
[37] [37] TALAPIN D V, MEKIS I, GTZINGER S, et al. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-shell-shell nanocrystals [J]. The Journal of Physical Chemistry B, 2004, 108(49): 18826-18831.
[38] [38] WANG X B, LI W W, SUN K. Stable efficient CdSe/CdS/ZnS core/multi-shell nanophosphors fabricated through a phosphine-free route for white light-emitting-diodes with high color rendering properties [J]. Journal of Materials Chemistry, 2011, 21(24): 8558-8565.
[39] [39] JANG E, JUN S, JANG H, et al. White-light-emitting diodes with quantum dot color converters for display backlights [J]. Advanced Materials, 2010, 22(28): 3076-3080.
[40] [40] REGULACIO M D, HAN M Y. Composition-tunable alloyed semiconductor nanocrystals [J]. Accounts of Chemical Research, 2010, 43(5): 621-630.
[41] [41] LI Y, HOU X Q, DAI X L, et al. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence [J]. Journal of the American Chemical Society, 2019, 141(16): 6448-6452.
[42] [42] TAN Z A, ZHANG Y, XIE C, et al. Near-band-edge electroluminescence from heavy-metal-free colloidal quantum dots [J]. Advanced Materials, 2011, 23(31): 3553-3558.
[43] [43] SHEA-ROHWER L E, MARTIN J E, CAI X C, et al. Red-emitting quantum dots for solid-state lighting [J]. ECS Journal of Solid State Science and Technology, 2013, 2(2): R3112-R3118.
[44] [44] BAILEY R E, NIE S M. Alloyed semiconductor quantum dots: Tuning the optical properties without Changing the particle size [J]. Journal of the American Chemical Society, 2003, 125(23): 7100-7106.
[45] [45] ZHENG Y, YANG Z, YING J Y. Aqueous synthesis of glutathione-capped ZnSe and Zn1-xCdxSe alloyed quantum dots [J]. Advanced Materials, 2007, 19(11): 1475-1479.
[46] [46] ZHONG X H, FENG Y Y, KNOLL W, et al. Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width [J]. Journal of the American Chemical Society, 2003, 125(44): 13559-13563.
[47] [47] JUN S, JANG E. Interfused semiconductor nanocrystals: brilliant blue photoluminescence and electroluminescence [J]. Chemical Communications, 2005(36): 4616-4618.
[48] [48] JUN S, JANG E. Bright and stable alloy core/multishell quantum dots [J]. Angewandte Chemie International Edition, 2013, 52(2): 679-682.
[49] [49] JANG H S, YANG H, KIM S W, et al. White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5∶Ce3+, Li+ phosphors [J]. Advanced Materials, 2008, 20(14): 2696-2702.
[50] [50] SHEN C Y, LI K, HOU Q L, et al. White LED based on YAG∶Ce,Gd phosphor and CdSe-ZnS core/shell quantum dots [J]. IEEE Photonics Technology Letters, 2010, 22(12): 884-886.
[51] [51] VERMA A, SHARMA S K, LIN C H, et al. Fabrication of highly efficient hybrid device structure based white light emitting diodes [J]. Optical and Quantum Electronics, 2020, 52(7): 353.
[52] [52] KIM S, KIM T, KANG M, et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes [J]. Journal of the American Chemical Society, 2012, 134(8): 3804-3809.
[53] [53] WANG X B, YAN X S, LI W W, et al. Doped quantum dots for white-light-emitting diodes without reabsorption of multiphase phosphors [J]. Advanced Materials, 2012, 24(20): 2742-2747.
[54] [54] XUAN T T, LIU J Q, XIE R J, et al. Microwave-assisted synthesis of CdS/ZnS∶Cu quantum dots for white light-emitting diodes with high color rendition [J]. Chemistry of Materials, 2015, 27(4): 1187-1193.
[55] [55] LIM J, JUN S, JANG E, et al. Preparation of highly luminescent nanocrystals and their application to light-emitting diodes [J]. Advanced Materials, 2007, 19(15): 1927-1932.
[56] [56] DENG Z T, YAN H, LIU Y. Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method [J]. Journal of the American Chemical Society, 2009, 131(49): 17744-17745.
[57] [57] BAE W K, NAM M K, CHAR K, et al. Gram-scale one-pot synthesis of highly luminescent blue emitting Cd1xZnxS/ZnS Nanocrystals [J]. Chemistry of Materials, 2008, 20(16): 5307-5313.
[58] [58] SADRA S, BASKARAN G K, RUSTAMZHON M, et al. Quantum dot white LEDs with high luminous efficiency [J]. Optica, 2018, 5(7): 793-802.
[59] [59] KIM K, JEONG S, WOO J Y, et al. Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs [J]. Nanotechnology, 2012, 23(6): 065602.
[60] [60] KUMAR B G, SADEGHI S, MELIKOV R, et al. Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs [J]. Nanotechnology, 2018, 29(24): 345605.
[61] [61] YUAN X, HUA J, ZENG R S, et al. Efficient white light emitting diodes based on Cu-doped ZnInS/ZnS core/shell quantum dots [J]. Nanotechnology, 2014, 25(43): 435202.
[62] [62] ZHAO J F, HUANG M L, ZHAO N, et al. Effect of Sn grain orientation on Cu diffusion in SnAgCu solder interconnect undergoing electromigration [C]//Proceedings of 2015 16th International Conference on Electronic Packaging Technology. Changsha, China: IEEE, 2015: 1275-1278.
[63] [63] JIANG T T, SHEN M H, DAI P, et al. Cd-free Cu-Zn-In-S/ZnS quantum dots@SiO2 multiple cores nanostructure: preparation and application for white LEDs [J]. Nanotechnology, 2017, 28(43): 435702.
[64] [64] ZHANG Z L, LIU D, LI D Z, et al. Dual emissive Cu∶InP/ZnS/InP/ZnS nanocrystals: single-source “greener” emitters with flexibly tunable emission from visible to near-infrared and their application in white light-emitting diodes [J]. Chemistry of Materials, 2015, 27(4): 1405-1411.
[65] [65] HUANG B, DAI Q, ZHUO N Z, et al. Bicolor Mn-doped CuInS2/ZnS core/shell nanocrystals for white light-emitting diode with high color rendering index [J]. Journal of Applied Physics, 2014, 116(9): 094303.
[66] [66] SAPRA S, MAYILO S, KLAR T A, et al. Bright white-light emission from semiconductor nanocrystals: by chance and by design [J]. Advanced Materials, 2007, 19(4): 569-572.
[67] [67] SHARMA V K, GUZELTURK B, ERDEM T, et al. Tunable white-light-emitting Mn-doped ZnSe nanocrystals [J]. ACS Applied Materials & Interfaces, 2014, 6(5): 3654-3660.
[68] [68] LIU B Z, LI R F, HU L, et al. White light-emitting quantum dot diodes and tuning of luminescence processes [J]. Applied Physics A, 2014, 116(3): 941-945.
[69] [69] PARK J H, KIM J Y, CHIN B D, et al. White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer [J]. Nanotechnology, 2004, 15(9): 1217-1220.
[70] [70] LI Y Q, RIZZO A, CINGOLANI R, et al. Bright white-light-emitting device from ternary nanocrystal composites [J]. Advanced Materials, 2006, 18(19): 2545-2548.
[71] [71] BAE W K, LIM J, LEE D, et al. R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices [J]. Advanced Materials, 2014, 26(37): 6387-6393.
[72] [72] LEE K H, HAN C Y, KANG H D, et al. Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer [J]. ACS Nano, 2015, 9(11): 10941-10949.
[73] [73] HONG A, KIM J, KWAK J. Sunlike white quantum dot light-emitting diodes with high color rendition quality [J]. Advanced Optical Materials, 2020, doi: 10.1002/adom.202001051.
[74] [74] LEE K H, HAN C Y, JANG E P, et al. Full-color capable light-emitting diodes based on solution-processed quantum dot layer stacking [J]. Nanoscale, 2018, 10(14): 6300-6305.
[75] [75] WANG L X, PAN J Y, QIAN J P, et al. A highly efficient white quantum dot light-emitting diode employing magnesium doped zinc oxide as the electron transport layer based on bilayered quantum dot layers [J]. Journal of Materials Chemistry C, 2018, 6(30): 8099-8104.
[76] [76] ZHANG H, SU Q, SUN Y Z, et al. Efficient and color stable white quantum-dot light-emitting diodes with external quantum efficiency over 23% [J]. Advanced Optical Materials, 2018, 6(16): 1800354.
[77] [77] JIANG C B, ZOU J H, LIU Y, et al. Fully solution-processed tandem white quantum-dot light-emitting diode with an external quantum efficiency exceeding 25% [J]. ACS Nano, 2018, 12(6): 6040-6049.
[78] [78] CAO F, ZHAO D W, SHEN P Y, et al. High-efficiency, solution-processed white quantum dot light-emitting diodes with serially stacked red/green/blue units [J]. Advanced Optical Materials, 2018, 6(20): 1800652.
[79] [79] ZHANG Y, XIE C, SU H P, et al. Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes [J]. Nano Letters, 2011, 11(2): 329-332.
[80] [80] LIU Z Y, TANG A W, XIE Y H, et al. Solution-processed planar white light-emitting diodes based on cadmium-free Cu-In-Zn-S/ZnS quantum dots and polymer [J]. Organic Electronics, 2017, 45: 20-25.
[81] [81] PAN J, SHANG Y Q, YIN J, et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes [J]. Journal of the American Chemical Society, 2018, 140(2): 562-565.
[83] [83] XIAO X T, TANG H D, ZHANG T Q, et al. Improving the modulation bandwidth of LED by CdSe/ZnS quantum dots for visible light communication [J]. Optics Express, 2016, 24(19): 21577-21586.
[84] [84] LIN C C, LIU R S. Advances in phosphors for light-emitting diodes [J]. The Journal of Physical Chemistry Letters, 2011, 2(11): 1268-1277.
[85] [85] TANAKA Y, HARUYAMA S, NAKAGAWA M. Wireless optical transmissions with white colored LED for wireless home links [C]// Proceedings of the 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. London, UK: IEEE, 2000: 1325-1329.
[86] [86] XIAO H, XIAO X T, WANG K, et al. Optimization of illumination performance of trichromatic white light-emitting diode and characterization of its modulation bandwidth for communication applications [J]. IEEE Photonics Journal, 2018, 10(5): 8201511.
[87] [87] XUE D K, RUAN C, ZHANG Y, et al. Enhanced bandwidth of white light communication using nanomaterial phosphors [J]. Nanotechnology, 2018, 29(45): 455708.
[89] [89] TIAN Z, TIAN P F, ZHOU X J, et al. Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication [J]. Nanoscale, 2019, 11(8): 3489-3494.
[94] [94] HU G Q, SUN Y Q, ZHUANG J L, et al. Enhancement of fluorescence emission for tricolor quantum dots assembled in polysiloxane toward solar spectrum-simulated white light-emitting devices [J]. Small, 2020, 16(1): 1905266.
[95] [95] ZHANG X Y, ZHANG Y, WANG Y, et al. Color-switchable electroluminescence of carbon dot light-emitting diodes [J]. ACS Nano, 2013, 7(12): 11234-11241.
[96] [96] YIN W X, BAI X, ZHANG X Y, et al. Multicolor light-emitting diodes with MoS2 quantum dots [J]. Particle & Particle Systems Characterization, 2019, 36(2): 1800362.
[97] [97] ZHAO Y, XUE D K, WANG J T, et al. Smart quantum dot LEDs with simulated solar spectrum for intelligent lighting [J]. Nanotechnology, 2020, 31(50): 505207.
[98] [98] FOLTA K M, CARVALHO S D. Photoreceptors and control of horticultural plant traits [J]. HortScience, 2015, 50(9): 1274-1280.
[99] [99] SONG J W. Grow light for plant factory using quantum dot LED [J]. Journal of International Council on Electrical Engineering, 2016, 6(1): 13-16.
[100] [100] PERRY T S. Quantum dots shift sunlight's spectrum to speed plant growth. [EB/OL][2020-06-04].http://spectrum. ieee. org/ view-from-the-valley/at work/start-ups/quantum-dots-shift-sunlights-to-speed-plant-growth
[101] [101] PETERS A. This 'quantum dot' tech helps grow more plants by making sunlight more powerful.[EB/OL][2020-02-24].http://www.fastcompany.com/90506355/this-quantum-dot-tech-helps-grow-more-plants-by-making-sunlight-move-powerful?position=3 & campaign-date=12192020
[102] [102] JORI G, PRATESI R, SCALVINI M. A multi-LED source for photoradiation therapy [M]//ANDREONI A, CUBEDDU R. Porphyrins in Tumor Phototherapy. Boston, MA: Springer, 1984: 301-308.
[103] [103] CHEN H, YEH T H, HE J, et al. Flexible quantum dot light-emitting devices for targeted photomedical applications [J]. Journal of the Society for Information Display, 2018, 26(5): 296-303.
[104] [104] CHEN H, HE J, LANZAFAME R, et al. Quantum dot light emitting devices for photomedical applications [J]. Journal of the Society for Information Display, 2017, 25(3): 177-184.
Get Citation
Copy Citation Text
ZHAO Yue, GAO Xu-peng, LU Po, BAI Xue, ZHANG Tie-qiang, ZHANG Yu. Quantum dot-based white LEDs and their applications of smart lighting[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(1): 187
Category:
Received: Oct. 10, 2020
Accepted: --
Published Online: Aug. 22, 2021
The Author Email: