Infrared and Laser Engineering, Volume. 50, Issue 12, 20210724(2021)
Deblocking sampling network for photon counting single-pixel imaging
[1] [1] Takhar D, Laska J N, Wakin M B, et al. A new compressive imaging camera architecture using opticaldomain compression [C]Conference on Computational Imaging IV, 2006: 2006011618.
[2] [2] Yu W K, Liu X F, Yao X R, et al. Single photon counting imaging system via compressive sensing[J]. arXiv, 2012: 1202.5866.
[3] Wang H, Yan Q, Li B, et al. Sampling time adaptive single photon compressive imaging[J]. IEEE Photonics Journal, PP, 1-1(2019).
[4] [4] Liu Y, Shi J, Zeng G. Singlephotoncounting polarization ghost imaging[J]. Appl Opt, 2016, 55(36): 1034710351.
[5] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, S293(2008).
[6] [6] Yu Wenkai. Application of compressed sensing in ultrasensitive timeresolved imaging spectroscopy[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese)
[7] [7] Taguchi K, Iwanczyk J S. Vision 2020: Single photon counting X‐ray detects in medical imaging[J]. Medical Physics, 2013, 40(10): 4820371.
[8] Shigetomo S, Hiromi S, Yoshiyuki T, et al. Astronomical observation with a Nb-Al-AlOX-Al-Nb STJ single photon detecor for optical wavelengths[J]. Publications of the Astronomical Society of Japan, 56, L19-L23(2004).
[9] Liu X, Yu W, Yao X. Measurement dimensions compressed spectral imaging with a single point detector[J]. Optics Communications, 365, 173-179(2016).
[10] [10] Davenpt M, Baraniuk R, Deve R, et al. The JohnsonLindenstrauss lemma meets compressed sensing [DBOL]. [20211112]. http: mdav. ece. gatech. edutalkprinceton2006. pdf.
[11] Baraniuk R, Davenport M, Devore R, et al. A simple proof of the restricted isometry property for random matrices[J]. Constructive Approximation, 28, 253-263(2008).
[12] [12] Bajwa W U, Haupt J D, Raz G M, et al. Toeplitzstructured compressed sensing matrices [C]2007 IEEESP 14th Wkshop on Statistical Signal Processing, 2007: 294298.
[13] Candes E, Tao T. Near optimal signal recovery from random projections: Universal encoding strategies[J]. IEEE Transactions on Information Theory, 52, 5406-5425(2004).
[14] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 53, 4655-4666(2007).
[15] [15] Needell D, Vershynin R. Signal recovery from inaccurate incomplete measurements via regularized thogonal matching pursuit[J]. IEEE Journal of ed Topics in Signal Processing, 2010, 4: 310316.
[16] [16] Li C. An efficient algithm f total variation regularization with applications to the single pixel camera compressive sensing[D]. Houston: Rice University, 2010.
[17] [17] Mousavi A, Patel A B, Baraniuk R G. A deep learning approach to structured signal recovery [C]IEEE, 2016.
[18] [18] Kulkarni K, Lohit S, Turaga P, et al. Recon: Noniterative reconstruction of images from compressively sensed measurements [C]Conference on Computer Vision Pattern Recognition (CVPR), IEEE, 2016.
[19] Yao H, Dai F, Zhang D, et al. Dr2-net: Deep residual reconstruction network for image compressive sensing[J]. Neurocomputing, 359, 483-493(2019).
[20] [20] Zhang Jian, Ghanem B. ISTA: Interpretable optimizationinspired deep wk f image compressive sensing [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition. 2018: 18281837.
[21] Higham C F, Murray-smith R, Padgett M J, et al. Deep learning for real-time single-pixel video[J]. Sci Rep, 8, 2369(2018).
[22] Wang F, Wang H, Wang H, et al. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019).
[23] Li B, Yan Qiurong, Wang Y F, et al. A binary sampling Res2 net reconstruction network for single-pixel imaging[J]. Review of Scientific Instruments, 91, 033709(2020).
[24] [24] Guan Yanqiu, Yan Qiurong, Yang Shengtao, et al. Singlephoton compression imaging based on residual coding decoding wk[J]. Acta Optica Sinica, 2020, 40(1): 0111022. (in Chinese)
[25] [25] Shi W, Caballero J, Huszar F, et al. Realtime single image video superresolution using an efficient subpixel convolutional neural wk [C]2016 IEEE Conference on Computer Vision Pattern Recognition (CVPR), 2016: 18741883.
[26] [26] Canh T N, Jeon B. Difference of convolution f deep compressive sensing[C]2019 IEEE International Conference on Image Processing (ICIP), 2019.
Get Citation
Copy Citation Text
Yining Xiong, Qiurong Yan, Zhitai Zhu, Yuanpeng Cai, Yaoming Yang. Deblocking sampling network for photon counting single-pixel imaging[J]. Infrared and Laser Engineering, 2021, 50(12): 20210724
Category: Special issue—Single-pixel imaging
Received: Sep. 30, 2021
Accepted: --
Published Online: Feb. 9, 2022
The Author Email: