Laser & Optoelectronics Progress, Volume. 60, Issue 17, 1700003(2023)

Research Progress of Mid-Infrared Supercontinuum and Its Coherence Based on Chalcogenide Fibers

Zhijian Wu1,2 and Xuefeng Peng2、*
Author Affiliations
  • 1Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo , 315211Zhejiang , China
  • 2College of Science & Technology, Ningbo University, Ningbo , 315211Zhejiang , China
  • show less
    Figures & Tables(16)
    SC generation in 13 cm-long Ge-As-Se fiber pumped with different wavelength[20]
    Transmission loss characteristic of Ge-Sb-S fiber[24]. (a) Loss diagram of Ge-Sb-S fiber (inset: output spot at 1.55 μm); (b) transmission efficiency of Ge-Sb-S fiber (inset: cross section of Ge-Sb-S fiber)
    The SC of Ge-Se-Te fiber[9]. (a) Optical fiber preform and cross section of fiber under electron microscope; (b) loss and dispersion of fiber; (c) experimental setup for enerating SC; (d) SC generated under experiment; (e) SC generated under simulation
    Structure and optical properties of all-solid hybrid MOF[30]. (a) Structure of As2Se3-AsSe2-As2S5 fiber; (b) transmittance for three glasses; (c) dispersion curves of As2Se3-AsSe2-As2S5 fiber with different core diameters
    Optical properties and structure of Ge-Sb-Se MOF[31]. (a) Cross-section of fiber; (b) output of SC
    Structure and optical properties of four-hole chalcohalide suspended core fiber[35]. (a) Cross section of four hole chalcohalide suspended core fiber; (b) transmittance for two glasses; (c) represents the SC produced by the experiment and simulation of four hole chalcohalide suspended core fiber at different wavelengths
    Optical properties of Ge-As-Se-Te tapered fiber[38]. (a) Structure diagram of tapered fiber (inset: represent untapered, taper waist, and transition region respectively); (b) loss diagram of fiber (inset: transmittance of core glass); (c) dispersion curves of Ge-As-Se-Te fiber with different fiber core diameters; (d) output of SC
    Structure diagram of cascade pump[43]
    Output SC of SiO2-ZBLAN-As2Se3 PCF[51]. (a) Cascade system structure for generating SC; (b) SC generated in ZBLAN fiber; (c) SC generated in As2Se3 fiber
    Double-cladding Ge-As-Se-Te fiber[55]. (a) SC output under different pump conditions; (b) first-order coherence
    GeS2-GaS3-CsI chalcohalide microstructure fiber[56]. (a) Cross section of optical fiber; (b) dispersion curves at different apertures; (c) SC output and coherence curve
    Double-cladding Ge-As-Se-Te tapered fiber[11]. (a) Structure and refractive index profile; (b) dispersion curve; (c) SC output; (d) coherence curve
    • Table 1. Physical parameters of low loss chalcogenide fiber matrix materials

      View table

      Table 1. Physical parameters of low loss chalcogenide fiber matrix materials

      CompositionTg /℃Tx /℃n0 @4 μm
      Ge15Sb18S672544242.3237
      Ge15Sb20.5S64.52504042.3399
    • Table 2. Main research results of SC spectrum generation with three different types in recent year

      View table

      Table 2. Main research results of SC spectrum generation with three different types in recent year

      Fiber typeGlass compositionFiber length /cmPump condition

      Spectral

      coverage /μm

      Ref.
      Step-index fiberGe-Se-Te4.48.15 μm/200 kW1.7-189
      Ge-As-Se135 μm/25 mW1.6-11.420
      Ge-As-S154.8 μm/170 fs/100 kHz2.5-7.523
      Ge-Sb-S224 μm/150 fs/1 kHz1.56-7.5924
      Microstructurd fiberGe-Sb-Se/Ge-Se13 μm/50 fs/90 pJ1.6-731
      As-Se0.52.56 μm/50fs/10 kW1-1434
      Ge-As-Se-I/As2S3-5 μm/150 fs1.6-1235
      Tapered fiberGe-As-Se-Te75.5 μm/19 mW2-12.738
      As-Se12.4 μm/90 mW/170 MHz1.4-4.239
    • Table 3. Main achievements of output power of chalcogenide fibers in recent years

      View table

      Table 3. Main achievements of output power of chalcogenide fibers in recent years

      Fiber systemPumpSC bandwidthPowerRef.
      As2S32.19 μm/1 ns/100 kHz2-4 μm143 mW41
      As2S32.45 μm/40 ps/10 MHz1.9-4.8 μm565 mW42
      Ge12As24Se644.0 μm/330 fs/21 MHz1.8-10 μm1.26 mW22
      ZBLAN-As2S3-As2Se3Tm-doped fiber amplifier2-6.5 μm1.39 W10
      As2Se3Er-doped ZBLAN fiber amplifier2-5 μm825 mW44
      InF3-As2S3Er-doped fiber amplifier1.97-5.1 μm440 mW46
      ZBLAN-As2S3Tm-doped fiber amplifier2-6.5 μm1.13 W47
      SiO2-ZBLAN-As38Se621.55 μm/3 ns/30 kHz2-7 μm6.5 mW49
      SiO2-ZBLAN-As2Se3Er-doped fiber amplifier2-10 μm16 mW51
    • Table 4. Main achievements of SC coherence of chalcogenide fibers with different types in recent years

      View table

      Table 4. Main achievements of SC coherence of chalcogenide fibers with different types in recent years

      Fiber typeGlass compositionFiber length /cmPump conditionCoherent spectrum /μmRef.
      Step-index fiberAs2S3353.6 μm/1.15 W2.5-544
      Ge-As-Se-Te195 μm/150 fs/1 kHz3.5-10.555
      Microstructurd fiberGeS2-GaS3-CsI1.53 μm/50 fs/3 nJ1.45-5.9556
      Ge-As-Se-Te/As2S3165 μm/24 mW2-13.257
      Ge-As-Se/Ge-As-S17 μm/50 fs/6 kW3.8-1458
      Tapered fiberAsSe2/As2S532.6 μm/10.12 kW/1 kHz1.6-3.761
      Ge-As-Se-Te106 μm/150 fs/1 kHz1.8-1411
    Tools

    Get Citation

    Copy Citation Text

    Zhijian Wu, Xuefeng Peng. Research Progress of Mid-Infrared Supercontinuum and Its Coherence Based on Chalcogenide Fibers[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1700003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Aug. 12, 2022

    Accepted: Sep. 13, 2022

    Published Online: Sep. 1, 2023

    The Author Email: Xuefeng Peng (pengxuefeng@nbu.edu.cn)

    DOI:10.3788/LOP222260

    Topics