Optical Communication Technology, Volume. 45, Issue 11, 45(2021)

Methods for production of quantum entanglement sources

WANG Wunan, WANG Hailong, SHI Yan, ZHAO Chunliu, CHEN Jun, ZHAO Tianqi, and JIN Shangzhong
Author Affiliations
  • [in Chinese]
  • show less
    References(64)

    [1] [1] EKERT A K. Quantum cryptography based on Bell's theorem[J]. Physical Review Letters, 1991, 67(6): 661-664.

    [2] [2] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390: 575-579.

    [3] [3] FINK M, STEINLECHNER F, HANDSTEINER J, et al. Entanglement-enhanced optical gyroscope[J]. New Journal of Physics, 2019, 21: 053010-1-053010-7.

    [4] [4] LEE J, SHEN L, CERE A, et al. Symmetrical clock synchronization with time-correlated photon pairs[J]. Applied Physics Letters, 2019, 114(10): 101102-1-101102-4.

    [5] [5] MAGDE D, MAHR H. Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16000[J]. Physical Review Letters, 1967, 18(21): 905-907.

    [6] [6] HONG C K, OU Z Y, MANDEL L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 1987, 59(18): 2044-2046.

    [7] [7] SHIH Y H, ALLEY C O. New Type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion[J]. Physical Review Letters, 1988, 61(26): 2921-2924.

    [8] [8] SHIH Y H, SERGIENKO A V, RUBIN M H, et al. Two-photon entanglement in type-II parametric down-conversion[J]. Physical Review A, 1994, 50(1): 23-28.

    [9] [9] KWIAT P G, WAKS E, WHITE A G, et al. Ultrabright source of polarization-entangled photons[J]. Physical Review A, 1999, 60(2): R773-R776.

    [10] [10] SONG X B, XU D Q, WANG H B, et al. Experimental observation of one-dimensional quantum holographic imaging[J]. Applied Physics Letters, 2013, 103(13): 131111-1-131111-4.

    [14] [14] LASOTA M, KOLENDERSKI P. Optimal photon pairs for quantum communication protocols[EB/OL].[2021-01-21]. https://www.nature.com/articles/s41598-020-77662-2.

    [15] [15] WU S, ZHANG D J, YANG H, et al. Quantum interference inside a nonlinear crystal with spontaneous parametric down-conversion[J]. Optics Communications, 2020, 463: 125379-1-125379-5.

    [16] [16] ARMSTRONG J A. Interactions between light waves in a nonlinear dielectric[J]. Phys Rev, 1962, 127: 1918-1939.

    [17] [17] FIORENTINO M, MESSIN G, KUKLEWICZ C E, et al. Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints[J]. Physical Review A, 2004, 69(4): 41801-1-41801-4.

    [18] [18] FIORENTINO M, KUKLEWICZ C E, WONG F N C. Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones[J]. Optics Express, 2005, 13(1): 127-135.

    [19] [19] PIRES H D L, EXTER M P V. Near-field correlations in the two-photon field[J]. Physical Review A, 2009, 80(5): 1-2.

    [20] [20] DI L P H, VAN EXTER M P. Observation of near-field correlations in spontaneous parametric down-conversion[J]. Physical Review A, 2009, 79(4): 126-136.

    [22] [22] KIM H, KWON O, MOON H S. Pulsed Sagnac source of polarization-entangled photon pairs in telecommunication band[J]. Scientific Reports, 2019, 9(1): 5031-1-5031-7.

    [23] [23] KUMAR R, GHOSH J. SPDC photon pairs using a spatially anti-symmetric pump beam in a ppLN ridge waveguide[J]. Applied Physics B, 2020, 126(11): 186-1-186-11.

    [24] [24] ELKUS B S, ABDELSALAM K, FATHPOUR S, et al. Quantum-correlated photon-pair generation via cascaded nonlinearity in an ultra-compact lithium-niobate nano-waveguide[J]. Optics Express, 2020, 28(26): 39963-39975.

    [25] [25] LOHRMANN A, PERUMANGATT C, VILLAR A, et al. Broadband pumped polarization entangled photon-pair source in a linear beam displacement interferometer[J]. Applied Physics Letters, 2020, 116(2): 021101-1-021101-4.

    [26] [26] KUMAR R, YADAV V K. Postselection-free, hyperentangled photon pairs in a periodically poled lithium-niobate ridge waveguide[J]. Physical Review A, 2020, 102(3): 033722-1-033722-6.

    [27] [27] KOLOBOV M I, FABRE C. Quantum Limits on Optical Resolution[J]. Phys.rev.lett, 2000, 85(18): 3789-3792.

    [28] [28] MOSSET A, DEVAUX F, LANTZ E. Spatially noiseless optical amplification of images[J]. Physical Review Letters, 2005, 94(22): 223603-1-223603-4.

    [29] [29] LEE J C, PARK K K, ZHAO T M, et al. Einstein-podolsky-rosen entanglement of narrow-band photons from cold atoms[J]. Physical Review Letters, 2016, 117(25): 250501-1-250501-5.

    [30] [30] BOYER V, ALBERTO M, POOSER R, et al. Entangled images from four-wave mixing[J]. Science, 2008, 321: 544-547.

    [31] [31] QIN Z, JING J, ZHOU J, et al. Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor[J]. Optics Letters, 2012, 37(15): 3141-3143.

    [32] [32] DING D S, ZHOU Z Y, SHI B S, et al. Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment[J]. Optics Express, 2012, 20(10): 11433-11444.

    [33] [33] SHU C, CHEN P, CHOW T K A, et al. Subnatural-linewidth biphotons from a doppler-broadened hot atomic vapor cell[J]. Nature Communication. 2016(7): 12783-1-12783-5.

    [34] [34] LEE G H, IHN Y S, LEE A, et al. Nonlocal two-photon interference of energy-time entangled photon pairs generated in Doppler-broadened ladder-type Rb 87 atoms[J]. Physical Review A, 2019, 100(5): 053817-1-053817-4.

    [36] [36] FANG Y, JING J. Quantum squeezing and entanglement from a two-mode phase-sensitive amplifier via four-wave mixing in rubidium vapor[J]. New Journal of Physics, 2015, 17(2): 023027-1-023027-11.

    [37] [37] WANG H, ZHAN Z, WANG Y, et al. Generation of tripartite entanglement from cascaded four-wave mixing processes[J]. Optics Express, 2016, 24: 23459-1-23459-10.

    [38] [38] LV S, JING J. Generation of quadripartite entanglement from cascaded four-wave-mixing processes[J]. Physical Review A, 2017, 96(4): 043873-1-043873-7.

    [39] [39] LIU S, LOU Y, JING J. Interference-induced quantum squeezing enhancement in a two-beam phase-sensitive amplifier[J]. Physical Review Letters, 2019, 123(11): 113602-1-113602-6.

    [40] [40] LI S, PAN X, REN Y, et al. Deterministic generation of orbital-angular-momentum multiplexed tripartite tntanglement[J]. Physical Review Letters, 2020, 124(8): 083605-1-083605-7.

    [41] [41] ZHANG K, WANG W, LIU S, et al. Reconfigurable hexapartite entanglement by spatially multiplexed four-wave mixing processes[J]. Physical Review Letters, 2020, 124(9): 090501-1-090501-6.

    [42] [42] FIORENTINO M, VOSS P L, SHARPING J E, et al. All-fiber photon-pair source for quantum communications[J]. IEEE Photonics Technology Letters, 2002, 14(7): 983-985.

    [43] [43] LI X Y, CHEN J, VOSS P, et al. All-fiber photon-pair source for quantum communications: Improved generation of correlated photons[J]. Optics Express, 2004, 12(16): 3737-3744.

    [44] [44] LI X Y, VOSS P L, SHARPING J E, et al. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band[J]. Physical Review Letters, 2005, 94(5): 053601-1-053601-4.

    [45] [45] LI X Y, YANG L, CUI L, et al. Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing[J]. Optics Letters, 2008, 33(6): 593-597.

    [46] [46] GUO X S, LI X, Liu N, et al. An all-fiber source of pulsed twin beams for quantum communication[J]. Applied Physics Letters, 2012, 101(26): 261111-1-261111-5.

    [49] [49] RIAZI A, CHEN C, ZHU E Y, et al. Biphoton shaping with cascaded entangled-photon sources[J]. NPJ Quantum Information, 2019, 5(1): 77-1-77-10.

    [50] [50] FANG B, MENOTTI M, LISCIDINI M, et al. Three-photon discrete-energy-entangled W state in optical fiber[J]. Physical Review Letters, 2019, 123(7): 070508-1-070508-6.

    [51] [51] FENG L T, ZHANG M, ZHOU Z Y, et al. Generation of a frequency-degenerate four-photon entangled state using a silicon nanowire[J]. Quantum Information, 2019(5): 90-1-90-7.

    [52] [52] LU X, LI Q, WESTLY D A, et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication[J]. Nature Physics, 2019, 15(4): 374-384.

    [53] [53] SUGIURA K, YIN Z, OKAMOTO R, et al. Broadband generation of photon-pairs from a CMOS compatible device[J]. Applied Physics Letters, 2020, 116(22): 224001-1-224001-5.

    [55] [55] WALTHER P, PAN J W, ASPELMEYER M, et al. De Broglie wavelength of a non-local four-photon state[J]. Nature, 2004, 429: 158-161.

    [56] [56] NAGATA T, OKAMOTO R, O'BRIEN J L, et al. Beating the standard quantum limit with four-entangled photons[J]. Science, 2007, 316: 726-729.

    [57] [57] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390: 575-579.

    [58] [58] PAN J W, BOUWMEESTER D, WEINFURTER H, et al. Experimental entanglement swapping: entangling photons that never interacted[J]. Physical Review Letters, 1998, 80(18): 3891-3894.

    [59] [59] SPRING J B, METCALF B J, HUMPHREYS P C, et al. Boson sampling on a photonic chip[J]. Science, 2013, 339: 798-801.

    [60] [60] BROOME M A, FEDRIZZI A, RAHIMI-KESHARI S, et al. Photonic boson sampling in a tunable circuit[J]. Science, 2013, 339: 794-798.

    [61] [61] ASPURU-GUZIK A, WALTHER P. Photonic quantum simulators[J]. Nature Physics, 2014, 8(4): 285-291.

    [62] [62] SENELLART P, SOLOMON G, WHIT A. High-performance semiconductor quantum-dot single-photon sources[J]. Nature Nanotechnology, 2017, 12(11): 1026-1039.

    [63] [63] WANG Z M, LIANG B L, SABLON K A, et al. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100)[J]. Applied Physics Letters, 2007, 90(11): 113120-1-113120-3.

    [64] [64] HUBER D, REINDL M, HUO Y, et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots[J]. Nature Communications, 2017, 8: 15506-15513.

    [65] [65] HUBER D, REINDL M, FILIPE C D S S, et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand[J]. Physical Review Letters, 2018, 121(3): 033902-1-033902-6.

    [66] [66] CHEN Y, ZOPF M, KEIL R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna[J]. Nature Communications, 2018, 9: 2994-3001.

    [67] [67] LIU J, SU R, WEI Y, et al. A solid-state entangled photon pair source with high brightness and indistinguishability[J]. Nature Nanotechnology, 2019, 14(6): 586-594.

    [68] [68] WANG H, HU H, CHUNG T H, et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability[J]. Physical Review Letters, 2019, 122(11): 113602-1-113602-6.

    [69] [69] MANNA S, HUANG H, SILVA S F C D, et al. Surface passivation and oxide encapsulation to improve optical properties of a single GaAs quantum dot close to the surface[J]. Applied Surface Science, 2020, 532: 147360-147367.

    [70] [70] ROTA M B, BASSET F B, TEDESCHI D, et al. Entanglement teleportation with photons from quantum dots: towards a solid-state based quantum network[EB/OL]. [2021-01-21]. https://ieeexplore.ieee.org/document/9057405.

    [71] [71] REINDL M, HUBER D, SCHIMPF C, et al. All-photonic quantum teleportation using on-demand solid-state quantum emitters[J]. Science Advances, 2018, 4(12): eaau1255-1-eaau1255-7.

    [72] [72] BASSET F B, ROTA M B, SCHIMPF C, et al. Entanglement swapping with photons generated on-demand by a quantum dot[J]. Physical Review Letters, 2019, 123(16): 160501-160506.

    Tools

    Get Citation

    Copy Citation Text

    WANG Wunan, WANG Hailong, SHI Yan, ZHAO Chunliu, CHEN Jun, ZHAO Tianqi, JIN Shangzhong. Methods for production of quantum entanglement sources[J]. Optical Communication Technology, 2021, 45(11): 45

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 21, 2021

    Accepted: --

    Published Online: Dec. 25, 2021

    The Author Email:

    DOI:10.13921/j.cnki.issn1002-5561.2021.11.009

    Topics