Chinese Journal of Lasers, Volume. 49, Issue 21, 2103001(2022)
Broadband High-Power Microwave Absorber Based on Water-Based Metamaterial
[1] Zhang Y H, Jiang W. Development of modern stealth technology[J]. Electronic Science and Technology, 194-197(2016).
[2] He L H, Deng L W, Luo H et al. Broadband microwave absorption properties of polyurethane foam absorber optimized by sandwiched cross-shaped metamaterial[J]. Chinese Physics B, 27, 127801(2018).
[3] Grant J, Escorcia-Carranza I, Li C et al. A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer[J]. Laser & Photonics Reviews, 7, 1043-1048(2013).
[4] Ye D X, Wang Z Y, Xu K W et al. Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption[J]. Physical Review Letters, 111, 187402(2013).
[5] Deng T W, Li Z W, Chua M J et al. Broadband and ultrathin frequency-dispersive metamaterial screen for reflectivity reduction[J]. IEEE Transactions on Antennas and Propagation, 63, 4156-4160(2015).
[6] Wu Z, Chen X Q, Zhang Z L et al. Design and optimization of a flexible water-based microwave absorbing metamaterial[J]. Applied Physics Express, 12, 057003(2019).
[7] Zhang Z L, Zhang L, Chen X Q et al. Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band[J]. Journal of Magnetism and Magnetic Materials, 497, 166075(2020).
[8] Wang C S, Jiang D F, Jiang X W. Polarization independent high absorption efficiency wide absorption bandwidth metamaterial absorber[J]. Laser & Optoelectronics Progress, 57, 031601(2020).
[9] Yahiaoui R, Guillet J P, de Miollis F et al. Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications[J]. Optics Letters, 38, 4988-4990(2013).
[10] Wang Y, Xuan X F, Zhu L et al. Design of multi-layer gear-shaped metamaterial absorber with broadband and high absorption[J]. Acta Optica Sinica, 41, 1823001(2021).
[11] Ghadimi A, Nayyeri V, Khanjarian M et al. Design and simulation of a wideband, wide-angle and polarization-insensitive microwave absorber based on pattern optimization of resistive films[J]. Journal of Physics D: Applied Physics, 54, 055102(2021).
[12] Wang B X, He Y H, Lou P C et al. Penta-band terahertz light absorber using five localized resonance responses of three patterned resonators[J]. Results in Physics, 16, 102930.(2020).
[13] Pang Y Q, Cheng H F, Zhou Y J et al. Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates[J]. Optics Express, 20, 12515-12520(2012).
[14] Kim Y J, Hwang J S, Yoo Y J et al. Triple-band metamaterial absorber based on single resonator[J]. Current Applied Physics, 17, 1260-1263(2017).
[15] Li L Y, Wang J, Ma H et al. Polarization insensitive metamaterial absorber based on E-shaped all-dielectric structure[J]. Journal of Advanced Dielectrics, 5, 1550009(2015).
[16] Lu Y, Chen J, Li J X. Design of all-dielectric ultra-wideband transparent water-based absorber[J]. Journal of Physics D: Applied Physics, 55, 115502(2022).
[17] Zhang H, Ling F, Wang H et al. A water hybrid graphene metamaterial absorber with broadband absorption[J]. Optics Communications, 463, 125394(2020).
[18] Andryieuski A, Kuznetsova S M, Zhukovsky S V et al. Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials[J]. Scientific Reports, 5, 13535(2015).
[19] Zhou Y F, Shen Z Y, Wu J et al. Design of ultra-wideband and near-unity absorption water-based metamaterial absorber[J]. Applied Physics B, 126, 52(2020).
[20] Zhao J M, Wei S, Wang C et al. Broadband microwave absorption utilizing water-based metamaterial structures[J]. Optics Express, 26, 8522-8531(2018).
[21] Chen J F, Xiao L, Yang J X et al. Water-based metamaterial absorber applied to ships[C](2019).
[22] Pang Y Q, Shen Y, Li Y F et al. Water-based metamaterial absorbers for optical transparency and broadband microwave absorption[J]. Journal of Applied Physics, 123, 155106(2018).
[23] Xiong H, Yang F. Ultra-broadband and tunable saline water-based absorber in microwave regime[J]. Optics Express, 28, 5306-5316(2020).
[24] Zhang X F, Zhang D J, Fu Y J et al. 3-D printed swastika-shaped ultrabroadband water-based microwave absorber[J]. IEEE Antennas and Wireless Propagation Letters, 19, 821-825(2020).
[25] Lu F T, Han T C. Optically transparent ultra-broadband metamaterial absorber[C], 2592-2595(2019).
[26] Yoo Y J, Ju S, Park S Y et al. Metamaterial absorber for electromagnetic waves in periodic water droplets[J]. Scientific Reports, 5, 14018(2015).
[27] Ellison W J. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0-25 THz and the temperature range 0-100 ℃[J]. Journal of Physical and Chemical Reference Data, 36, 1-18(2007).
[28] Zhang X Q, Yan F P, Du X M et al. Water-based broadband metamaterial absorber insensitive to angle and temperature[J]. Chinese Journal of Lasers, 48, 1613002(2021).
[29] Li H, Yu J, Chen Z. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 47, 0903001(2020).
Get Citation
Copy Citation Text
Guangsheng Deng, Wenqing Chen, Zhenchun Yu, Jun Yang, Zhiping Yin. Broadband High-Power Microwave Absorber Based on Water-Based Metamaterial[J]. Chinese Journal of Lasers, 2022, 49(21): 2103001
Category: Materials
Received: Jan. 19, 2022
Accepted: Mar. 8, 2022
Published Online: Oct. 14, 2022
The Author Email: Deng Guangsheng (dgsh@hfut.edu.cn)