Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1624(2025)

Progress on Lithium-Ion Transport Throughput in Solid-State State Batteries

XIAO Guanyou, REN Kangrui, and HE Yanbing*
Author Affiliations
  • Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
  • show less
    References(69)

    [1] [1] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359–367.

    [2] [2] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nat Mater, 2016, 16(1): 16–22.

    [3] [3] ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nat Rev Mater, 2020, 5: 229–252.

    [4] [4] MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2(4): 16103.

    [5] [5] CHEN R S, LI Q H, YU X Q, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chem Rev, 2020, 120(14): 6820–6877.

    [6] [6] WANG Z Y, ZHAO C Z, SUN S, et al. Achieving high-energy and high-safety lithium metal batteries with high-voltage-stable solid electrolytes[J]. Matter, 2023, 6(4): 1096–1124.

    [7] [7] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem Rev, 2014, 114(23): 11503–11618.

    [8] [8] ZHENG Y, YAO Y Z, OU J H, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chem Soc Rev, 2020, 49(23): 8790–8839.

    [9] [9] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652–657.

    [10] [10] HUO S D, SHENG L, XUE W D, et al. Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries[J]. InfoMat, 2023, 5(3): e12394.

    [11] [11] XU L, TANG S, CHENG Y, et al. Interfaces in solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991–2015.

    [12] [12] JANEK J, ZEIER W G. A solid future for battery development[J]. Nat Energy, 2016, 1(9): 16141.

    [13] [13] SCHWIETERT T K, ARSZELEWSKA V A, WANG C, et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes[J]. Nat Mater, 2020, 19(4): 428–435.

    [14] [14] HAN F D, YUE J, CHEN C, et al. Interphase engineering enabled all-ceramic lithium battery[J]. Joule, 2018, 2(3): 497–508.

    [15] [15] ZHAO Q, LIU X, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nat Energy, 2019, 4: 365–373.

    [16] [16] LIU M, ZHANG S N, VAN ECK E R H, et al. Improving Li-ion interfacial transport in hybrid solid electrolytes[J]. Nat Nanotechnol, 2022, 17(9): 959–967.

    [17] [17] SHI P R, MA J B, LIU M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nat Nanotechnol, 2023, 18(6): 602–610.

    [18] [18] ZAHIRI B, PATRA A, KIGGINS C, et al. Revealing the role of the cathode-electrolyte interface on solid-state batteries[J]. Nat Mater, 2021, 20(10): 1392–1400.

    [19] [19] YIN Y C, YANG J T, LUO J D, et al. A LaCl3-based lithium superionic conductor compatible with lithium metal[J]. Nature, 2023, 616(7955): 77–83.

    [20] [20] SHI K, WAN Z P, YANG L, et al.In situconstruction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries[J]. Angew Chem Int Ed, 2020, 59(29): 11784–11788.

    [21] [21] YAN W L, MU Z L, WANG Z X, et al. Hard-carbon-stabilized Li–Si anodes for high-performance all-solid-state Li-ion batteries[J]. Nat Energy, 2023, 8: 800–813.

    [22] [22] YANG K, ZHAO L, AN X F, et al. Determining the role of ion transport throughput in solid-state lithium batteries[J]. Angew Chem Int Ed, 2023, 62(24): e202302586.

    [23] [23] ZHANG S Q, LI R H, DENG T, et al. Oscillatory solvation chemistry for a 500 Wh kg−1 Li-metal pouch cell[J]. Nat Energy, 2024, 9: 1285–1296.

    [24] [24] YANG K, MA J B, LI Y H, et al. Weak-interaction environment in a composite electrolyte enabling ultralong-cycling high-voltage solid-state lithium batteries[J]. J Am Chem Soc, 2024.

    [25] [25] LI Y X, SONG S B, KIM H, et al. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381(6653): 50–53.

    [26] [26] LI S, ZHANG S Q, SHEN L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries[J]. Adv Sci, 2020, 7(5): 1903088.

    [27] [27] ALEXANDER G V, SHI C M, O’NEILL J, et al. Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture[J]. Nat Mater, 2023, 22: 1136–1143.

    [28] [28] HAO X G, ZHAO Q, SU S M, et al. Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries[J]. Adv Energy Mater, 2019, 9(34): 1901604.

    [29] [29] LIU Y, AN X F, YANG K, et al. Achieving a high loading of cathode in PVDF-based solid-state battery[J]. Energy Environ Sci, 2024, 17(1): 344–353.

    [30] [30] MA J B, ZHONG G M, SHI P R, et al. Constructing a highly efficient “solid–polymer–solid” elastic ion transport network in cathodes activates the room temperature performance of all-solid-state lithium batteries[J]. Energy Environ Sci, 2022, 15(4): 1503–1511.

    [31] [31] WANG Z Y, XIA J L, JI X, et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries[J]. Nat Energy, 2024, 9: 251–262.

    [32] [32] WANG Z X, LU Y, ZHAO C Z, et al. Suppressing Li voids in all-solid-state lithium metal batteries through Li diffusion regulation[J]. Joule, 2024, 8(10): 2794–2810.

    [33] [33] LI W H, LI M S, WANG S, et al. Superionic conducting vacancy-rich -Li3N electrolyte for stable cycling of all-solid-state lithium metal batteries[J]. Nat Nanotechnol, 2025, 20: 265–275.

    [34] [34] SONG Z Y, WANG T R, YANG H, et al. Promoting high-voltage stability through local lattice distortion of halide solid electrolytes[J]. Nat Commun, 2024, 15(1): 1481.

    [35] [35] WANG G, ZHANG S, WU H, et al. Oxychloride polyanion clustered solid-state electrolytesviahydrate-assisted synthesis for all-solid-state batteries[J]. Adv Mater, 2025, 37(4): e2410402.

    [36] [36] MA Y T, QIU Y, YANG K, et al. Competitive Li-ion coordination for constructing a three-dimensional transport network to achieve ultra-high ionic conductivity of a composite solid-state electrolyte[J]. Energy Environ Sci, 2024, 17(21): 8274–8283.

    [37] [37] CHENG G Z, SUN H, WANG H R, et al. Efficient ion percolating network for high-performance all-solid-state cathodes[J]. Adv Mater, 2024, 36(21): e2312927.

    [38] [38] AN X F, LIU Y, YANG K, et al. Dielectric filler-induced hybrid interphase enabling robust solid-state Li metal batteries at high areal capacity[J]. Adv Mater, 2024, 36(13): e2311195.

    [39] [39] REN H Y, ZHENG G R, LI Y H, et al. Stabilizing LiCoO2 at 4.6 V by regulating anti-oxidative solvents[J]. Energy Environ Sci, 2024, 17(20): 7944–7957.

    [40] [40] LIU J J, HAO W, FANG M M, et al. Screening of F-containing electrolyte additives and clarifying their decomposition routes for stable Li metal anodes[J]. Nat Commun, 2024, 15(1): 9356.

    [41] [41] WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nat Mater, 2015, 14(10): 1026–1031.

    [42] [42] JUN K, CHEN Y, WEI G, et al. Diffusion mechanisms of fast lithium-ion conductors[J]. Nat Rev Mater, 2024, 9: 887–905.

    [43] [43] ZENG Y, OUYANG B, LIU J, et al. High-entropy mechanism to boost ionic conductivity[J]. Science, 2022, 378(6626): 1320–1324.

    [44] [44] LI P X, XU Y, ZHAO P C, et al. The universal super cation-conductivity in multiple-cation mixed chloride solid-state electrolytes[J]. Angew Chem Int Ed, 2023, 62(48): e202306433.

    [45] [45] YU X H, BATES J B, JELLISON G E, et al. A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride[J]. J Electrochem Soc, 144(2): 524–532.

    [46] [46] LI Z, FU J L, ZHOU X Y, et al. Ionic conduction in polymer-based solid electrolytes[J]. Adv Sci, 2023, 10(10): e2201718.

    [47] [47] ZHENG J, TANG D M, HU P Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angew Chem Int Ed, 2016, 55(40): 12538–12542.

    [48] [48] LIU M, CHENG Z, GANAPATHY S, et al. Tandem interface and bulk Li-ion transport in a hybrid solid electrolyte with microsized active filler[J]. ACS Energy Lett, 2019, 4(9): 2336–2342.

    [49] [49] YAN Y Y, JU J W, DONG S M, et al.In situpolymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery[J]. Adv Sci, 2021, 8(9): 2003887.

    [50] [50] WANG Y T, JU J W, DONG S M, et al. Facile design of sulfide-based all solid-state lithium metal battery:In situpolymerization within self-supported porous argyrodite skeleton[J]. Adv Funct Mater, 2021, 31(28): 2101523.

    [51] [51] JIANG F, WANG Y T, JU J W, et al. Percolated sulfide in salt-concentrated polymer matrices extricating high-voltage all-solid-state lithium-metal batteries[J]. Adv Sci, 2022, 9(25): e2202474.

    [52] [52] TUFAIL M K, ZHAI P B, KHOKAR W, et al. Evaluation of solid electrolytes: Development of conventional and interdisciplinary approaches[J]. Interdiscip Mater, 2023, 2(4): 529–568.

    [55] [55] LI X R, LIU S, SHI J, et al. High performance porous poly(ethylene oxide)-based composite solid electrolytes[J]. Chem Eng J, 2023, 468: 143795.

    [56] [56] ZHENG J G, SUN C G, WANG Z X, et al. Double ionic-electronic transfer interface layers for all-solid-state lithium batteries[J]. Angew Chem Int Ed, 2021, 60(34): 18448–18453.

    [57] [57] LIANG J Y, ZENG X X, ZHANG X D, et al. Engineering Janus interfaces of ceramic electrolyteviadistinct functional polymers for stable high-voltage Li-metal batteries[J]. J Am Chem Soc, 2019, 141(23): 9165–9169.

    [58] [58] SU H, LI J R, ZHONG Y, et al. A scalable Li–Al–Cl stratified structure for stable all-solid-state lithium metal batteries[J]. Nat Commun, 2024, 15(1): 4202.

    [59] [59] WAN H L, WANG Z Y, ZHANG W R, et al. Interface design for all-solid-state lithium batteries[J]. Nature, 2023, 623(7988): 739–744.

    [60] [60] ZHAI L, YANG K, JIANG F Y, et al. High-performance solid-state lithium metal batteries achieved by interface modification[J]. J Energy Chem, 2023, 79: 357–364.

    [61] [61] REN F C, LIANG Z T, ZHAO W G, et al. The nature and suppression strategies of interfacial reactions in all-solid-state batteries[J]. Energy Environ Sci, 2023, 16(6): 2579–2590.

    [62] [62] LIU M, WANG C, ZHAO C L, et al. Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteriesviaNMR measurements[J]. Nat Commun, 2021, 12(1): 5943.

    [63] [63] CHEN Y, HUANG L, ZHOU D L, et al. Elucidating and minimizing the space-charge layer effect between NCM cathode and Li6PS5Cl for sulfide-based solid-state lithium batteries[J]. Adv Energy Mater, 2024, 14(30): 2304443.

    [64] [64] KONG X K, GU R, JIN Z Z, et al. Maximizing interface stability in all-solid-state lithium batteries through entropy stabilization and fast kinetics[J]. Nat Commun, 2024, 15(1): 7247.

    [65] [65] WU J Y, ZHANG X, JU Z Y, et al. From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems[J]. Adv Mater, 2021, 33(26): e2101275.

    [66] [66] SONG A M, ZHANG W J, MA L, et al. Decoupling ion-electron transport in thick solid-state battery electrodes[J]. ACS Energy Lett, 2024, 9(10): 5027–5036.

    [67] [67] LI M Y, PAN H Y, LIU T, et al. All-in-one ionic–electronic dual-carrier conducting framework thickening all-solid-state electrode[J]. ACS Energy Lett, 2022, 7(2): 766–772.

    [68] [68] WANG K, GU Z Q, XI Z W, et al. Li3TiCl6 as ionic conductive and compressible positive electrode active material for all-solid-state lithium-based batteries[J]. Nat Commun, 2023, 14(1): 1396.

    [69] [69] SONG Z Y, DAI Y M, WANG T R, et al. An active halide catholyte boosts the extra capacity for all-solid-state batteries[J]. Adv Mater, 2024, 36(33): e2405277.

    [70] [70] MA J, ZHANG S, ZHENG Y, et al. Interelectrode talk in solid-state lithium-metal batteries[J]. Adv Mater, 2023, 35(38): e2301892.

    [71] [71] ZHENG Y, ZHANG S, MA J, et al. Codependent failure mechanisms between cathode and anode in solid state lithium metal batteries: Mediated by uneven ion flux[J]. Sci Bull, 2023, 68(8): 813–825.

    Tools

    Get Citation

    Copy Citation Text

    XIAO Guanyou, REN Kangrui, HE Yanbing. Progress on Lithium-Ion Transport Throughput in Solid-State State Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1624

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 31, 2024

    Accepted: Jul. 11, 2025

    Published Online: Jul. 11, 2025

    The Author Email: HE Yanbing (he.yanbing@sz.tsinghua.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240843

    Topics