Laser & Optoelectronics Progress, Volume. 61, Issue 9, 0904002(2024)
Room-Temperature Readout Circuit for Improving Counting Rate of Superconducting Nanowire Single-Photon Detector
[1] Chang J, Los J W N, Tenorio-Pearl J O et al. Detecting telecom single photons with 99.5‒2.07+0.5% system detection efficiency and high time resolution[J]. APL Photonics, 6, 036114(2021).
[2] Hu P, Li H, You L X et al. Detecting single infrared photons toward optimal system detection efficiency[J]. Optics Express, 28, 36884-36891(2020).
[3] Mueller A S, Korzh B, Runyan M et al. Free-space coupled superconducting nanowire single-photon detector with low dark counts[J]. Optica, 8, 1586-1587(2021).
[4] Wollman E E, Verma V B, Beyer A D et al. UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature[J]. Optics Express, 25, 26792-26801(2017).
[5] Korzh B, Zhao Q Y, Allmaras J P et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector[J]. Nature Photonics, 14, 250-255(2020).
[6] Münzberg J, Vetter A, Beutel F et al. Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity[J]. Optica, 5, 658-665(2018).
[7] Chen J P, Zhang C, Liu Y et al. Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas[J]. Nature Photonics, 15, 570-575(2021).
[8] Pittaluga M, Minder M, Lucamarini M et al. 600-km repeater-like quantum communications with dual-band stabilization[J]. Nature Photonics, 15, 530-535(2021).
[9] Crain S, Cahall C, Vrijsen G et al. High-speed low-crosstalk detection of a 171Yb+ qubit using superconducting nanowire single photon detectors[J]. Communications Physics, 2, 97(2019).
[10] Zhong H S, Wang H, Deng Y H et al. Quantum computational advantage using photons[J]. Science, 370, 1460-1463(2020).
[11] Ivanov H, Leitgeb E, Pezzei P et al. Experimental characterization of SNSPD receiver technology for deep space FSO under laboratory testbed conditions[J]. Optik, 195, 163101(2019).
[12] Khatri F I, Robinson B S, Semprucci M D et al. Lunar laser communication demonstration operations architecture[J]. Acta Astronautica, 111, 77-83(2015).
[13] Zhang W J, Huang J, Zhang C J et al. A 16-pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz[J]. IEEE Transactions on Applied Superconductivity, 29, 2200204(2019).
[14] Yang J K W, Kerman A J, Dauler E A et al. Modeling the electrical and thermal response of superconducting nanowire single-photon detectors[J]. IEEE Transactions on Applied Superconductivity, 17, 581-585(2007).
[15] Zhao Q Y, Jia T, Gu M et al. Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits[J]. Optics Letters, 39, 1869-1872(2014).
[16] Lü C L, Zhang W J, You L X et al. Improving maximum count rate of superconducting nanowire single-photon detector with small active area using series attenuator[J]. AIP Advances, 8, 105018(2018).
[17] Berggren K K, Zhao Q Y, Abebe N et al. A superconducting nanowire can be modeled by using SPICE[J]. Superconductor Science and Technology, 31, 055010(2018).
[18] Lü C L, Zhou H, Li H et al. Large active area superconducting single-nanowire photon detector with a 100 μm diameter[J]. Superconductor Science and Technology, 30, 115018(2017).
[19] Zhang L B, Yan X C, Jia X Q et al. Maximizing switching current of superconductor nanowires via improved impedance matching[J]. Applied Physics Letters, 110, 072602(2017).
[20] Wu J J, You L X, Chen S J et al. Improving the timing jitter of a superconducting nanowire single-photon detection system[J]. Applied Optics, 56, 2195-2200(2017).
Get Citation
Copy Citation Text
Junjie Wu, Yuqi Dong, Chengjun Zhang, Xuxiao Wan, Feng Shao, Yu Ding, Yanyang Jiang, Lü Chaolin. Room-Temperature Readout Circuit for Improving Counting Rate of Superconducting Nanowire Single-Photon Detector[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0904002
Category: Detectors
Received: Jan. 7, 2023
Accepted: Feb. 27, 2023
Published Online: May. 22, 2024
The Author Email: Lü Chaolin (cllv@cnphotec.com)
CSTR:32186.14.LOP223108