Microelectronics, Volume. 51, Issue 6, 778(2021)
Technical Progress of GaN Digital Power Amplifier
[1] [1] CRIPPS S C. RF power amplifiers for wireless communications [J]. IEEE Microwave Mag, 2000, 1(1): 64.
[2] [2] HOLZER K D, YUAN W, WALLING J S. Wideband techniques for outphasing power amplifiers [J]. IEEE Trans Circ Syst I: Regu Pap, 2018, 65(9): 2715-2725.
[3] [3] CAPPELLO T, DUH A, BARTON T W, et al. A dual-band dual-output power amplifier for carrier aggregation [J]. IEEE Trans Microwave Theo Tech, 2019, 67(7): 3134-3146.
[4] [4] WATANABE S, TAKAYAMA Y, ISHIKAWA R, et al. A miniature broadband Doherty power amplifier with a series-connected load [J]. IEEE Trans Microwave Theo Tech, 2015, 63(2): 572-579.
[5] [5] HALLBERG W, OZEN M, GUSTAFSSON D, et al. A Doherty power amplifier design method for improved efficiency and linearity [J]. IEEE Trans Microwave Theo Tech, 2016, 64(12): 4491-4504.
[6] [6] IWAMOTO M, JAYARAMAN A, HANINGTON G, et al. Bandpass delta-sigma class-S amplifier [J]. Elec Lett, 2000, 36(12): 1010-1012.
[7] [7] HEINRICH W, WOLFF N, BENGTSSON O, et al. GaN pushing the limits of high-speed switching [C] // 22nd Int MIKON. Poznan, Poland. 2018: 73-76.
[8] [8] SCHMID U, REBER R, CHARTIER S, et al. Advances on GaN based switch mode amplifiers for commu0nication applications [C] // 41st Europ Microwave Conf. Manchester, UK. 2011: 163-166.
[9] [9] HUNG T P, RODE J, LARSON L E, et al. H-bridge class-D power amplifiers for digital pulse modulation transmitters [C] // IEEE/MTT-S Int Microwave Symp. Honolulu, HI, USA. 2007: 1091-1094.
[10] [10] WENTZEL A, MELIANI C, HEINRICH W. RF class-S power amplifiers: state-of-the-art results and potential [C] // IEEE MTT-S Int Microwave Symp. Anaheim, CA, USA. 2010: 812-815.
[11] [11] CHUNG S, MA R, SHINJO S, et al. Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding [J]. IEEE Trans Microwave Theo Techniq, 2015, 63(2): 598-613.
[12] [12] WENTZEL A, MELIANI C, HEINRICH W. A voltage-mode class-S power amplifier for the 450 MHz band [J]. Int J Microwave Wireless Technol, 2011, 3(3): 311-318.
[13] [13] AL-MOZANI D, WENTZEL A, HEINRICH W. On distortion in digital microwave power amplifiers [J]. Frequenz, 2017, 71(1-2): 11-17.
[14] [14] HUHN F, WENTZEL A, HEINRICH W. A new modulator for digital RF power amplifiers utilizing a wavetable approach [J]. Int J Microwave Wireless Technol, 2017, 9(6): 1251-1260.
[15] [15] MAROLDT S, HAUPT C, KIEFER R, et al. High efficiency digital GaN MMIC power amplifiers for future switch-mode based mobile communication systems [C] // IEEE Compound Semicond Integr Circ Symp. Greensboro, NC, USA. 2009: 1-4.
[16] [16] WENTZEL A, SCHNIEDER F, MELIANI C, et al. A simplified switch-based GaN HEMT model for RF switch-mode amplifiers [C] // EuMIC. Rome, Italy. 2009: 77-80.
[17] [17] QUAY R, MAROLDT S. Design and modelling challenges for advanced class-S digital transmitters [C] // Workshop Integr Nonl Microwave & Millimetre-Wave Circ. Vienna, Austria. 2011: 1-4.
[18] [18] MAROLDT S. Gallium nitride based transistors for high-efficiency microwave switch-mode amplifiers [D]. Verlag Nicht Ermittelbar, 2010.
[19] [19] CHU R. GaN power switches on the rise: demonstrated benefits and unrealized potentials [J]. Appl Phys Lett, 2020, 116(9): 5133718.
[20] [20] HUHN F, WENTZEL A, HEINRICH W. GaN-based digital transmitter chain utilizing push-pull gate drivers for high switching speed and built-in DPD [C] // 12th EuMIC. Nuremberg, Germany. 2017: 97-100.
[21] [21] HONG Y P, MUKAI K, GHEIDI H, et al. High efficiency GaN switching converter IC with bootstrap driver for envelope tracking applications [C] // IEEE RFIC. Seattle, WA, USA. 2013: 353-356.
[22] [22] NAKAMIZO H, MUKAI K, SHINJO S, et al. Over 65% PAE GaN voltage-mode class d power amplifier for 465 MHz operation using bootstrap drive [C] // IEEE Top Conf PAWR. San Diego, CA, USA. 2015: 1-3.
[23] [23] ZHANG Y, RODRíGUEZ M, MAKSIMOVIC D. Very high frequency PWM buck converters using monolithic GaN half-bridge power stages with integrated gate drivers [J]. IEEE Trans Power Elec, 2016, 31(11): 7926-7942.
[24] [24] AL-MOZANI D, WENTZEL A, HEINRICH W. New output network design approach for voltage-mode class-S PAs [C] // German Microwave Conf. Nuremberg, Germany. 2015: 9-12.
[25] [25] AL-MOZANI D, WENTZEL A, MELIANI C, et al. A 900 MHz voltage-mode class-S power amplifier [C] // 7th German Microwave Conf. Ilmenau, Germany. 2012: 1-4.
[26] [26] WENTZEL A, HEINRICH W. A GaN voltage-mode class-D MMIC with improved overall efficiency for future RRH applications [C] // Europ Microwave Conf. Nuremberg, Germany. 2013: 549-552.
[27] [27] LUDWIG R. RF circuit design: theory & applications [M]. Bengaluru, India: Pearson Education India, 2000.
[28] [28] WENTZEL A, HILT O, WURFL J, et al. A highly efficient GHz switching GaN-based synchronous buck converter module [J]. Int J Microwave Wireless Technol, 2020, 12(10): 945-953.
[29] [29] HUHN F, MULLER F, SCHELLHASE L, et al. High efficiency, high bandwidth switch-mode envelope tracking supply modulator [C] // IEEE/MTT-S IMS. Los Angeles, CA, USA. 2020: 853-856.
[30] [30] SAKATA S, LANFRANCO S, KOLMONEN T, et al. An 80 MHz modulation bandwidth high efficiency multi-band envelope-tracking power amplifier using GaN single-phase buck-converter [C] // IEEE MTT-S IMS. Honolulu, HI, USA. 2017: 1854-1857.
[31] [31] KOMATSUZAKI Y, LANFRANCO S, KOLMONEN T, et al. A high efficiency 36-40 GHz envelope-tracking power amplifier using GaN soft-switching buck-converter [C] // IEEE/MTT-S IMS. Philadelphia, PA, USA. 2018: 465-468.
[32] [32] ZHANG Y, STRYDOM J, DE ROOIJ M, et al. Envelope tracking GaN power supply for 4G cell phone base stations [C] // IEEE APEC. Long Beach, CA, USA. 2016: 2292-2297.
[33] [33] ZHANG Y, RODRIGUEZ M, MAKSIMOVIC D. Very high frequency PWM buck converters using monolithic GaN half-bridge power stages with integrated gate drivers [J]. IEEE Trans Power Elec, 2015, 31(11): 7926-7942.
[34] [34] FLORIAN C, CAPPELLO T, PAGANELLI R P, et al. Envelope tracking of an RF high power amplifier with an 8-level digitally controlled GaN-on-Si supply modulator [J]. IEEE Trans Microwave Theo Tech, 2015, 63(8): 2589-2602.
[35] [35] YERRA S, KRISHNAMOORTHY H. Multi-phase three-level buck converter with current self-balancing for high bandwidth envelope tracking power supply [C] // IEEE APEC. New Orleans, LA, USA. 2020: 1872-1877.
[36] [36] LI D, ZHANG Y, RODR M, et al. Band separation in linear-assisted switching power amplifiers for accurate wide-bandwidth envelope tracking [C] // IEEE ECCE. Pittsburgh, PA, USA. 2014: 1113-1118.
[37] [37] SHUKLA S, KITCHEN J. GaN-on-Si switched mode RF power amplifiers for non-constant envelope signals [C] // IEEE Top Conf RF/Microwave PAWR. Phoenix, AZ, USA. 2017: 88-91.
[38] [38] MIAJA P F, RODRIGUEZ M, RODRIGUEZ A, et al. A linear assisted DC/DC converter for envelope tracking and envelope elimination and restoration applications [C] // IEEE Energy Convers Congr & Expo. Atlanta, GA, USA. 2010: 3825-3832.
[39] [39] VASIC M, GARCIA O, OLIVER J A, et al. Theoretical efficiency limits of a serial and parallel linear-assisted switching converter as an envelope amplifier [J]. IEEE Trans Power Elec, 2013, 29(2): 719-728.
[40] [40] MIAJA P F, RODRIGUEZ A, SEBASTIAN J. Buck-derived converters based on gallium nitride devices for envelope tracking applications [J]. IEEE Trans Power Elec, 2014, 30(4): 2084-2095.
[41] [41] RIVAS J M, JACKSON D, LEITERMANN O, et al. Design considerations for very high frequency dc-dc converters [C] // 37th IEEE Power Elec Special Conf. Jeju, Korea (South). 2006: 1-11.
[42] [42] CHEN Y, LI C, LI W, et al. Non-magnetic resonant-type high-frequency high-voltage power conversion with silicon carbide power semiconductor devices [C] // 1st Workshop WiPDA Asia. Xi’an, China. 2018: 90-94.
[43] [43] STANCHEV O, BEKOV E, VAN DEN BOSSCHE A. Self-oscillating gate driver used for gallium nitride transistors in high frequency applications [C] //19th Int SIELA. Bourgas, Bulgaria. 2016: 1-4.
[44] [44] SHINJO S, HONG Y P, GHEIDI H, et al. High speed, high analog bandwidth buck converter using GaN HEMTs for envelope tracking power amplifier applications [C] // IEEE Top Conf WiSNet. Austin, TX, USA. 2013: 13-15.
[45] [45] ZHANG Y, RODRIGUEZ M, MAKSIMOVIC D. 100 MHz, 20 V, 90% efficient synchronous buck converter with integrated gate driver [C] // IEEE ECCE. Pittsburgh, PA, USA. 2014: 3664-3671.
[46] [46] ZHANG Y, RODRIGUEZ M, MAKSIMOVIC D. Output filter design in high-efficiency wide-bandwidth multi-phase buck envelope amplifiers [C] // IEEE APEC. Charlotte, NC, USA. 2015: 2026-2032.
[47] [47] SEBASTIAN J, FERNANDEZ-MIAJA P, ORTEGA- GONZALEZ F J, et al. Design of a two-phase buck converter with fourth-order output filter for envelope amplifiers of limited bandwidth [J]. IEEE Trans Power Elec, 2013, 29(11): 5933-5948.
[48] [48] COSTINETT D, SELTZER D, MAKSIMOVIC D, et al. Inherent volt-second balancing of magnetic devices in zero-voltage switched power converters [C] // 28th IEEE APEC. Long Beach, CA, USA. 2013: 9-15.
[49] [49] HOFFMANN T, WENTZEL A, HUHN F, et al. Novel digital microwave PA with more than 40% PAE over 10 dB power back-off range [C] // IEEE MTT-S IMS. Honolulu, HI, USA. 2017: 2037-2040.
Get Citation
Copy Citation Text
GAO Yuan, SHAN Yuehui, LUO Weijun. Technical Progress of GaN Digital Power Amplifier[J]. Microelectronics, 2021, 51(6): 778
Category:
Received: Jun. 8, 2021
Accepted: --
Published Online: Feb. 14, 2022
The Author Email: