Infrared and Laser Engineering, Volume. 51, Issue 11, 20220494(2022)

Progress and application of near-infrared II confocal microscopy (invited)

Yifei Li1,2, Mubin He1,2, Tianxiang Wu1,2, Jing Zhou1,2, Zhe Feng1,2, and Jun Qian1,2
Author Affiliations
  • 1International Research Center for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
  • 2State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310058, China
  • show less
    References(56)

    [1] Cai Z C, Zhu L, Wang M Q, et al. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates[J]. Theranostics, 10, 4265-4276(2020).

    [2] Pettit E J, Hallett M B. Dynamic imaging of cytosolic free Ca2+ in human neutrophils using confocal laser scanning microscopy[J]. Cell Biology International, 21, 649-654(1997).

    [3] Panzer J A, Song Y Q, Balice-Gordon R J. In vivo imaging of preferential motor axon outgrowth to and synaptogenesis at prepatterned acetylcholine receptor clusters in embryonic zebrafish skeletal muscle[J]. Journal of Neuroscience, 26, 934-947(2006).

    [4] Forest F, Cinotti E, Yvorel V, et al. Ex vivo confocal microscopy imaging to identify tumor tissue on freshly removed brain sample[J]. Journal of Neuro-oncology, 124, 157-164(2015).

    [5] Kim H M, Lee D K, Long N P, et al. Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans[J]. Environmental Pollution, 246, 578-586(2019).

    [6] Welsher K, Liu Z, Sherlock S P, et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice[J]. Nature Nanotechnology, 4, 773-780(2009).

    [7] Feng Z, Tang T, Wu T X, et al. Perfecting and extending the near-infrared imaging window[J]. Light-Science & Appli-cations, 10, 197(2021).

    [8] Zhu S J, Yang Q L, Antaris A L, et al. Molecular imaging of biological systems with a clickable dye in the broad 800-to 1,700-nm near-infrared window[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 962-967(2017).

    [9] Feng Z, Yu X M, Jiang M X, et al. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor[J]. Theranostics, 9, 5706-5719(2019).

    [10] Qi J, Sun C W, Zebibula A, et al. Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region[J]. Advanced Materials, 30, e1706856(2018).

    [11] Li C, Li F, Zhang Y, et al. Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot[J]. ACS Nano, 9, 12255-12263(2015).

    [12] Bruns O T, Bischof T S, Harris D K, et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots[J]. Nature Biomedical Engineering, 1, 56(2017).

    [13] He Y, Wang S F, Yu P, et al. NIR-II cell endocytosis-activated fluorescent probes for in vivo high-contrast bioimaging diagnostics[J]. Chemical Science, 12, 10474-10482(2021).

    [14] Feng Zhe, Qian Jun. Advances on in vivo fluorescence bioimaging in the second near-infrared window[J]. Laser & Optoelectronics Progress, 59, 0617001(2022).

    [15] Minsky M. Memoir on inventing the confocal scanning microscope[J]. Scanning, 10, 128-138(1988).

    [16] Egger M D, Petráň M. New reflected-light microscope for viewing unstained brain and ganglion cells[J]. Science, 157, 305-307(1967).

    [17] Wilson T. Imaging properties and applications of scanning optical microscopes[J]. Applied Physics, 22, 119-128(1980).

    [18] Frigault M M, Lacoste J, Swift J L, et al. Live cell imaging: Tips and tools[J]. Biophysical Journal, 96, 30A(2009).

    [19] [19] Waters J C. Chapter 6 LiveCell Fluescence Imaging[M]Sluder G, Wolf D E. Methods in Cell Biology. Salt Lake City, UT, USA: Academic Press, 2013: 114, 125150.

    [20] Lacoste J, Young K, Brown C M. Live-cell migration and adhesion turnover assays[J]. Methods in Molecular Biology, 931, 61-84(2013).

    [21] Nagerl U V, Willig K I, Hein B, et al. Live-cell imaging of dendriticspines by STED microscopy[J]. PNAS, 105, 18982-18987(2008).

    [22] Cabrera J, Olmo R, Ruiz-Ferrer V, et al. A phenotyping method of giant cells from root-knot nematode feeding sites by confocal microscopy highlights a role for CHITINASE-LIKE 1 in arabidopsis[J]. International Journal of Molecular Sciences, 19, 429(2018).

    [23] Shen Jiaxin, Chen Yaowen, Han Taizhen. Confocal imaging of Ca2+ transients and cell contractions simultianeously in heart cells[J]. Acta Laser Biology Sinica, 13, 182-185(2004).

    [24] [24] O''Connell K F, Golden A. Confocal Imaging of the Microtubule Cytoskeleton in C. elegans Embryos Germ Cells[M]Paddock S W. Confocal Microscopy: Methods Protocols. New Yk, NY: Springer, 2014, 1075: 257272.

    [25] Chisholm K I, Ida K K, Davies A L, et al. In vivo imaging of flavoprotein fluorescence during hypoxia reveals the importance of direct arterial oxygen supply to cerebral cortex tissue[J]. Adv Exp Med Biol, 876, 233-239(2016).

    [26] Chu L L, Wang S W, Li K H, et al. Biocompatible near-infrared fluorescent nanoparticles for macro and microscopic in vivo functional bioimaging[J]. Biomedical Optics Express, 5, 4076-4088(2014).

    [27] Jonkman J, Brown C M. Any way you slice it-A comparison of confocal microscopy techniques[J]. Journal of Biomolecular Techniques: JBT, 26, 54-65(2015).

    [28] [28] Nipkow P. Electric telescope: Germany: 30105[P]. 18850115.

    [29] Petran M, Hadravsky M, Egger M D, et al. Tandem-scanning reflected-light microscope[J]. Journal of the Optical Society of America, 58, 661(1968).

    [30] Zhang Yanli, Dai Yali, Chen Yalan, et al. New methods for rapid experiment using spinning disk confocal microscope[J]. Progress in Modern Biomedicine, 19, 3784-3788(2019).

    [31] Zubkovs V, Antonucci A, Schuergers N, et al. Spinning-disc confocal microscopy in the second near-infrared window (NIR-II)[J]. Scientific Reports, 8, 13770(2018).

    [32] Zhu S J, Herraiz S, Yue J Y, et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates[J]. Advances Materials, 30, e1705799(2018).

    [33] Wan H, Yue J Y, Zhu S J, et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues[J]. Nature Communications, 9, 1171(2018).

    [34] Yu X, Feng Z, Cai Z, et al. Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy[J]. Journal of Materials Chemistry B, 7, 6623-6629(2019).

    [35] Yu W B, Guo B, Zhang H Q, et al. NIR-II fluorescence in vivo confocal microscopy with aggregation-induced emission dots[J]. Science Bulletin, 64, 410-416(2019).

    [36] Qian J, Tang B Z. AIE luminogens for bioimaging and theranostics: From organelles to animals[J]. Chem, 3, 56-91(2017).

    [37] Luo J D, Xie Z L, Lam J W Y, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chemical Communications, 1740-1741(2001).

    [38] Hubel D H, Wiesel T N. Ferrier lecture. Functional architecture of macaque monkey visual cortex[J]. Proceedings of the Royal Society of London Series Biological Sciences, 198, 1-59(1977).

    [39] Rakic P. Specification of cerebral cortical areas[J]. Science, 241, 170-176(1988).

    [40] Que Bujun, Peng Shiyi, Geng Weihang, et al. The fluorescence in vivo wide-field microscopic imaging technology and application in the second near-infrared region[J]. Journal of Infrared and Millimeter Waves, 41, 166-183(2022).

    [41] Zhang M, Yue J, Cui R, et al. Bright quantum dots emitting at ~1, 600 nm in the NIR-IIb window for deep tissue fluorescence imaging[J]. Proceedings of the National Academy of Sciences, 115, 6590-6595(2018).

    [42] Xia F, Wu C, Sinefeld D, et al. In vivo label-free confocal imaging of the deep mouse brain with long-wavelength illumination[J]. Biomedical Optics Express, 9, 6545-6555(2018).

    [43] You L X. Superconducting nanowire single-photon detectors for quantum information[J]. Nanophotonics, 9, 2673-2692(2020).

    [44] Kadin A M, Johnson M W. Nonequilibrium photon induced hotspot: A new mechanism for photo detection inultrathin metallic films[J]. Applied Physics Letters, 69, 3938-3940(1996).

    [45] Gol'Tsman G N, Okunev O, Chulkova G, et al. Picosecond superconducting single-photon optical detector[J]. Applied Physics Letters, 79, 705-707(2001).

    [46] You Lixing. A powerful tool for quantum information ——superconducting nanowire single-photon detectors[J]. Physics, 50, 678-683(2021).

    [47] [47] Reddy D V, Lita A E, Nam S W, et al. Achieving 98% system efficiency at 1550 nm in superconducting nanowire single photon detects[C]Rochester Conference on Coherence Quantum Optics, 2019.

    [48] Hu P, Li H, You L, et al. Detecting single infrared photons toward optimal system detection efficiency[J]. Optics Express, 28, 36884-36891(2020).

    [49] Reddy D V, Nerem R R, Nam S W, et al. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550  nm[J]. Optica, 7, 1649-1653(2020).

    [50] Chang J, Los J, Tenorio-Pearl J O, et al. Detecting telecom single photons with (99.5(-2.07)(+0.5))% system detection efficiency and high time resolution[J]. APL Photonics, 6, 036114(2021).

    [51] Liao J L, Yin Y X, Yu J, et al. Depth-resolved NIR-II fluorescence mesoscope[J]. Biomedical Optics Express, 11, 2366-2372(2020).

    [52] Xia F, Gevers M, Fognini A, et al. Short-wave infrared confocal fluorescence imaging of deep mouse brain with a superconducting nanowire single-photon detector[J]. ACS Photonics, 8, 2800-2810(2021).

    [53] Wang F, Ren F, Ma Z, et al. In vivo non-invasive confocal fluorescence imaging beyond 1, 700 nm using superconducting nanowire single-photon detectors[J]. Nature Nanotechnology, 17, 653-660(2022).

    [54] Yu J, Zhang R L, Gao Y F, et al. Intravital confocal fluorescence lifetime imaging microscopy in the second near-infrared window[J]. Optics Letters, 45, 3305-3308(2020).

    [55] Mao Yan, Tao Louis, Chen Liangyi. Application and development of adaptive optics to three-dimensional in vivo deep tissue fluorescent microscopy[J]. Infrared and Laser Engineering, 45, 0602001(2016).

    [56] Wang Huawei, Cao Jianzhong, Ma Caiwen, et al. Design of infrared imaging system with adaptive correction function[J]. Infrared and Laser Engineering, 43, 61-66(2014).

    CLP Journals

    [1] Chenglei YE, Zhiping HE, Xuehan WANG, Aijun JIN. Method and validation in second near-infrared window for multi-scale fluorescence intravital imaging[J]. Infrared and Laser Engineering, 2025, 54(8): 20250136

    Tools

    Get Citation

    Copy Citation Text

    Yifei Li, Mubin He, Tianxiang Wu, Jing Zhou, Zhe Feng, Jun Qian. Progress and application of near-infrared II confocal microscopy (invited)[J]. Infrared and Laser Engineering, 2022, 51(11): 20220494

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue-Fluorescence microscopy: techniques and applications

    Received: Jul. 19, 2022

    Accepted: --

    Published Online: Feb. 9, 2023

    The Author Email:

    DOI:10.3788/IRLA20220494

    Topics