Journal of Synthetic Crystals, Volume. 53, Issue 3, 449(2024)
Poling Electric Field Uniformization Design Regulates the Duty Cycle of Periodically Poled Lithium Niobate
[1] [1] BOES A, CHANG L, LANGROCK C, et al. Lithium niobate photonics: unlocking the electromagnetic spectrum[J]. Science, 2023, 379(6627): eabj4396.
[2] [2] OSSI P M. Advances in the application of lasers in materials science[M]. Berlin: Springer, 2018.
[3] [3] READY J F. Industrial applications of lasers[M]. 2nd ed. San Diego: Academic Press, 1997.
[4] [4] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): e1806452.
[5] [5] SUN J, HAO Y X, ZHANG L, et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947-964 (in Chinese).
[6] [6] BRYAN D A, GERSON R, TOMASCHKE H E. Increased optical damage resistance in lithium niobate[J]. Applied Physics Letters, 1984, 44(9): 847-849.
[7] [7] CHEN H, HU X, ZHU S. Optical superlattice: from bulk to thin film [J]. Journal of Synthetic Crystals, 2022, 51 (9-10): 1527-1534 (in Chinese).
[8] [8] FENG D, MING N B, HONG J F, et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J]. Applied Physics Letters, 1980, 37(7): 607.
[9] [9] YAMADA M, NADA N, SAITOH M, et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation[J]. Applied Physics Letters, 1993, 62(5): 435-436.
[10] [10] LIU H, SANG Y, SUN D, et al. Lithium niobate crystals in the information age: progress and prospect [J]. Journal of Synthetic Crystals, 2021, 50(4): 708-715.
[11] [11] ZHU S N, ZHU Y Y, ZHANG Z Y, et al. LiTaO3 crystal periodically poled by applying an external pulsed field[J]. Journal of Applied Physics, 1995, 77(10): 5481-5483.
[12] [12] JI L, YU J, NI W J, et al. Numerical analysis of geometric parameters in periodic electric poled lithium niobate[J]. Journal of Synthetic Crystals, 2005, 34(5): 920-925 (in Chinese).
[13] [13] WANG F L, SUN D H, LIU Q L, et al. Growth of large size near-stoichiometric lithium niobate single crystals with low coercive field for manufacturing high quality periodically poled lithium niobate[J]. Optical Materials, 2022, 125: 112058.
[14] [14] ISHIZUKI H, TAIRA T, KURIMURA S, et al. Periodic poling in 3-mm-thick MgO∶LiNbO3 crystals[J]. Japanese Journal of Applied Physics, 2003, 42(Part 2, No. 2A): L108-L110.
[15] [15] KURODA A, KURIMURA S, UESU Y. Domain inversion in ferroelectric MgO∶LiNbO3 by applying electric fields[J]. Applied Physics Letters, 1996, 69(11): 1565-1567.
[16] [16] LIANG L Y, WANG F L, SANG Y H, et al. Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes[J]. CrystEngComm, 2019, 21(6): 941-947.
[17] [17] SHUR V Y, RUMYANTSEV E L, NIKOLAEVA E V, et al. Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications[J]. Ferroelectrics, 2000, 236(1): 129-144.
[18] [18] SHUR V Y, AKHMATKHANOV A R, BATURIN I S. Micro- and nano-domain engineering in lithium niobate[J]. Applied Physics Reviews, 2015, 2(4): 040604.
[19] [19] LIU Q L, SONG Y K, WANG F L, et al. Ferroelectric domain reversal dynamics in LiNbO3 optical superlattice investigated with a real-time monitoring system[J]. Small, 2022, 18(32): 2202761.
[20] [20] MILLER G D. Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance[D]. Stanford: Stanford University, 1998.
[21] [21] MISSEY M, RUSSELL S, DOMINIC V, et al. Real-time visualization of domain formation in periodically poled lithium niobate[J]. Optics Express, 2000, 6(10): 186-195.
[22] [22] LIU Q L, WANG F L, WANG D Z, et al. Temperature dependent domain-wall moving dynamics of lithium niobate during high electric field periodic poling[J]. Journal of Applied Physics, 2020, 128(22): 224101.
Get Citation
Copy Citation Text
LIU Qilu, ZHENG Mingyang, GAO Yang, ZHANG Longxi, SONG Yukun, WANG Fulei, LIU Hong, WANG Dongzhou, SANG Yuanhua. Poling Electric Field Uniformization Design Regulates the Duty Cycle of Periodically Poled Lithium Niobate[J]. Journal of Synthetic Crystals, 2024, 53(3): 449
Category:
Received: Jan. 8, 2024
Accepted: --
Published Online: Jul. 30, 2024
The Author Email: SANG Yuanhua (sangyh@sdu.edu.cn)
CSTR:32186.14.