Chinese Journal of Lasers, Volume. 38, Issue 6, 601001(2011)

Applications of Laser Nano Manufacturing Technologies

Zhong Minlin* and Fan Peixun
Author Affiliations
  • [in Chinese]
  • show less
    References(84)

    [2] [2] The national matural science foundation of engineering and material science. Mechanical Engineering Discipline Development Strategy Report 2011~2020[M]. Beijing:Science Press,2010

    [3] [3] D. Buerle. Laser Processing and Chemistry[M]. 3rd ed., Berlin: Springer, 2000

    [4] [4] A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos et al.. Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy[J]. Appl. Phys. Lett., 2003, 82(8): 1146~1148

    [5] [5] T. Tanaka, H. B. Sun, S. Kawata. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system[J]. Appl. Phys. Lett., 2002, 80(2): 312~314

    [6] [6] J. D. Boor, D. K. Kim, V. Schmidt. Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd′s interferometer[J]. Opt. Lett., 2010, 35(20): 3450~3452

    [7] [7] M. C. Marconi, P. C. Wachulak. Extreme ultraviolet lithography with table top lasers[J]. Progress Quantum Electron., 2010, 34(4): 173~190

    [8] [8] C. S. Lim, M. H. Hong, Y. Lin et al.. Microlens array fabrication by laser interference lithography for superresolution nano patterning[J]. Appl. Phys. Lett., 2006, 89(19): 191125

    [9] [9] S. C. Lo, H. N. Wang. Near-field photolithography by a fibre probe[C]. Maui: Proceedings of 1st IEEE Conference on Nanotechnology, 2001. 36~39

    [10] [10] E. McLeod, C. B. Arnold. Subwavelength direct-write nanopatterning using optically trapped microspheres[J]. Nature Nanotechnology, 2008, 3(7): 413~417

    [11] [11] Y. F. Lu, W. D. Song, Y. W. Zheng et al.. Laser writing of a sub-wavelength structure on silicon (100) surfaces with particle enhanced optical irradiation[J]. JETP Lett., 2000, 72(9): 457~459

    [12] [12] W. Guo, Z. B. Wang, L. Li et al.. Near-field laser parallel nanofabrication of arbitrary-shaped patterns[J]. Appl. Phys. Lett., 2007, 90(24): 243101

    [13] [13] W. Guo, Z. B. Wang, L. Li et al.. Laser parallel nanopatterning of lines and curves by microparticle lens arrays[J]. J. Laser Micro/Nanoengineering, 2007, 2(3): 212~215

    [14] [14] J. C. Martinez-Anton. Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography[J]. J. Opt. A: Pure Appl. Opt., 2006, 8(4): S213~S218

    [15] [15] W. Srituranvanich, N. Fang, C. Sun et al.. Plasmonic nanolithography[J]. Nano Lett., 2004, 4(6): 1085~1088

    [16] [16] X. Luo, T. Ishihara. Subwavelength photolithography basedon surface plasmon polariton resonance[J]. Opt. Express, 2004, 12(14): 3055~3065

    [17] [17] C. L. Sajti, R. Sattari, B. N. Chichkov et al... Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid[J]. J. Phys. Chem., 2009, 114(6): 2421~2427

    [18] [18] W. P. Jiang, P. Molian, H. Ferkel. Rapid production of carbon nanotubes by high power laser ablation[J]. Trans. ASME J. Manuf. Sci. Engng., 2005, 127(3): 703~707

    [19] [19] N. Grobert, M. Terrones, S. Trasobares et al.. A novel route to aligned nanotubes and nanofibres using laserpatterned substrates[J]. Appl. Phys. A, 2000, 70(2): 175~183

    [20] [20] H. Kanzow, A. Schmalz, A. Ding. Laser-assisted production of multi-walled carbon nanotubes form acetylene[J]. Chem. Phys. Lett., 1998, 295(5-6): 525~530

    [21] [21] S. Kawata, H. B. Sun, T. Tanaka et al.. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697~698

    [22] [22] F. Formaneka, N. Takeyasua, T. Tanaka et al.. Three-dimenstional fabrication of metallic micro/nanostructures by two-photon polymerization for metalmaterials[C]. SPIE, 2006, 6324: 63240T

    [23] [23] K. S. Lee, R. H. Kim, D. Y. Yang et al.. Advances in 3D nano/microfabrication using two-photon initiated polymerization[J]. Progress Polymer Sci., 2008, 33(6): 631~681

    [24] [24] Cui Zheng. Micro-Nanofabrication Technologies and Applications[M]. 2nd ed., Beijing:Higher Education Press,2009

    [25] [25] P. Ball. Reversing the prism[OL].[2008-08-11] http:∥www. nature.com/news/2008/080811/full/news.2008.1033.html

    [26] [26] Justyna K. Gansel, Michael Thiel, Michael S. Rill et al.. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513~1515

    [27] [27] Michael Thiel, Michael S. Rill, Georg von Freymann et al.. Three-dimensional bi-chiral photonic crystals[J]. Adv. Mater., 2009, 21(46): 4680~4682

    [28] [28] Tolga Ergin, Nicolas Stenger, Patrice Brenner et al.. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337~339

    [29] [29] Michael S. Rill, Christine Plet, Michael Thiel et al.. Photonic metamaterials by direct laser writing and silver chemical vapour deposition[J]. Nature Materials, 2008, 7(7): 543~546

    [30] [30] Michael S. Rill, Christine E. Kriegler, Michael Thiel et al.. Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation[J]. Opt. Lett., 2009, 34(1): 19~21

    [31] [31] Nanoscribe. Impressum[OL]. 2010, http://www.nanoscribe.de/

    [32] [32] Arseniy I. Kuznetsov, Andrey B. Evlyukhin, Carsten Reinhardt et al.. Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications[J]. J. Opt. Soc. Am. B, 2009, 26(12): B130~B138

    [33] [33] Satoshi Kawata, Takuo Tanaka, Nobuyuki Takeyasu. Two-photon fabrication of three-dimensional metamaterials[C]. Baltimore: International Quantum Electronics Conference, 2009, IThL1

    [34] [34] Yaoyu Cao, Nobuyuki Takeyasu, Takuo Tanaka et al.. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction[J]. Small, 2009, 5(10): 1144~1148

    [35] [35] Z. C. Chen, M. H. Hong, H. Dong et al.. Parallel laser microfabrication of terahertz metamaterialsand its polarization-dependent transmission property[J]. Appl. Phys. A, 2010, 101(1): 33~36

    [36] [36] G. Parker, M. Charlton. Photonic crystals[J]. Physics World, 2000, 13(8): 29

    [37] [37] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20): 2059~2062

    [38] [38] J. D. Joannopoulos, P. R. Villeneuve, S. H. Fan. Photonics crystals: putting a new twist on light[J]. Nature, 1997, 386(6621): 143~147

    [39] [39] S. Noda, M. Fujita, T. Asano. Spontaneous-emission control by photonic crystals and nanocavities[J]. Nat. Photon., 2007, 1(8): 449~458

    [40] [40] Baohua Jia, Hong Kang, Jiafang Li et al.. Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method[J]. Opt. Lett., 2009, 34(13): 1918~1920

    [41] [41] M. Farsari, A. Ovsianikov, M. Vamvakaki et al.. Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore[J]. Appl. Phys. A, 2008, 93(1): 11~15

    [42] [42] Wojciech Haske, Vincent W. Chen, Joel M. Hales et al.. 65 nm feature sizes using visible wavelength 3-D multiphoton lithography[J]. Opt. Express, 2007, 15(6): 3426~3436

    [43] [43] M. H. Hong, Z. Q. Huang, Y. Lin et al.. Laser precision engineering from microfabrication to nanoprocessing[C]. San Jose: Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science, 2008. 1~2

    [44] [44] J. Brian Leen, Paul Hansen, Yao-Te Cheng et al.. Near-field optical data storage using C-apertures[J]. Appl. Phys. Lett., 2010, 97(7): 073111

    [45] [45] Q. Xie, M. H. Hong, H. L. Tan et al.. Fabrication of nanostructures with laser interference lithography[J]. J. Alloys and Compounds, 2008, 449(1-2): 261~264

    [46] [46] Matthias Wuttig, Noboru Yamada. Phase-change materials for rewriteable data storage[J]. Nature Materials, 2007, 6(11): 824~832

    [47] [47] Y. Lin, M. H. Hong, G. X. Chen et al.. Hybrid laser micro/nanofabrication of phase change materials with combination of chemical processing[J]. J. Mater. Process. Technol., 2007, 192-193: 340~345

    [48] [48] Y. Lin, M. H. Hong, T. C. Chong et al.. Ultrafast-laser-induced parallel phase-change nanolithography[J]. Appl. Phys. Lett., 2006, 89(4): 041108

    [49] [49] Y. Lin, M. H. Hong, W. J. Wang et al.. Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser[J]. Appl. Phys. A, 2005, 80(3): 461~465

    [50] [50] K. Miura, Jianrong Qiu, S. Fujiwara et al.. Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions[J]. Appl. Phys. Lett., 2002, 80(13): 2263~2265

    [51] [51] E. Stratakis, A. Ranella, M. Farsari et al.. Laser-based micro/nanoengineering for biological applications[J]. Progress Quantum Electron., 2009, 33(5): 127~163

    [52] [52] Boris Chichkov. Two-photon polymerization enhances rapid prototyping of medical devices[OL]. 2007 http:∥spie.org/x13541.xml ArticleI1 ID=x13541

    [53] [53] K. Venkatakrishnan, S. Jariwala, B. Tan. Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate[J]. Opt. Express, 2009, 17(4): 2756~2672

    [54] [54] B. Ilic, D. Czaplewski, M. Zalalutdinov et al.. Fabrication of flexible polymer tubes for micro and nanofluidic applications[J]. H. G. J. Vac. Sci. Technol. B, 2002, 20(6): 2459~2465

    [55] [55] Dan V. Nicolau, Elena P. Ivanova, Florin Fulga et al.. Protein immobilisation on micro/nanostructures fabricated by laser microablation[J]. Biosensors Bioelectron., 2010, 7(44): 1337~1345

    [56] [56] Esther Rebollar, Irene Frischauf, Michael Olbrich et al.. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene[J]. Biomaterials, 2008: 1796~1806

    [57] [57] A. Doraiswamy, C. Jin, R. J. Narayan et al.. Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices[J]. Acta Biomater., 2006, 2(3): 267~275

    [58] [58] Y. Lu, S. C. Chen. Micro and nano-fabrication of biodegradable polymers for drug delivery[J]. Adv. Drug Delivery Rev., 2004, 56(11): 1621~1633

    [59] [59] Scott J. Hollister. Porous scaffold design for tissue engineering[J]. Nature Materials, 2005, 4(7): 518~524

    [60] [60] E. Stratakis, A. Ranella, M. Farsari et al.. Laser-based micro/nanoengineering for biological applications[J]. Progress Quantum Electron., 2009, 33(5): 127~163

    [61] [61] Wai-Yee Yeong, Chee-Kai Chua, Kah-Fai Leong et al.. Rapid prototyping in tissue engineering: challenges and potential[J]. Trends Biotechnol., 2004, 22(12): 643~652

    [62] [62] T. Anderson, J. Hu, M. Ramme et al.. Integrating optics and micro-fluidic channels using femtosecond laser irradiation[C]. SPIE, 2009, 7203: 72030I

    [63] [63] Thomas Woggon, Thomas Kleiner, Martin Punke et al.. Nanostructuring of organic-inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization[J]. Opt. Express, 2009, 17(4): 2500~2507

    [64] [64] T. Ueda , S. Katsuki, K. Takahashi et al.. Fabrication and characterization of carbon nanotube based high sensitive gas sensors operable at room temperature[J]. Diamond Relat. Mater., 2008, 17(7-10): 1586~1589

    [65] [65] S. M. Huang, Z. Sun, B.S. Luk′yanchuk et al.. Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon[J]. Appl. Phys. Lett., 2005, 86(16): 161911

    [66] [66] X. C. Wang, H. Y. Zheng, C. W. Tan et al.. Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation[J]. Appl. Phys. Lett., 2010, 96(8): 084101

    [67] [67] A. Y. Vorobyev, Chunlei Guo. Enhanced absorptance of gold following multipulse femtosecond laser ablation[J]. Phys. Rev. B, 2005, 72(19): 195422

    [68] [68] Anatoliy Y.Vorobyev, Chunlei Guo. Change in absorptance of metals following multi-pulse femtosecond laser ablation[J]. J. Phys.: Conf. Ser., 2007, 59(59): 579~584

    [69] [69] A. Y. Vorobyev, Chunlei Guo. Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals[J]. Appl. Phys. A, 2007, 86(3): 321~324

    [70] [70] A. Y. Vorobyev, Chunlei Guo. Colorizing metals with femtosecond laser pulses[J]. Appl. Phys. Lett., 2008, 92(4): 041914

    [71] [71] A. Y. Vorobyev, Chunlei Guo. Femtosecond laser blackening of platinum[J]. J. Appl. Phys., 2008, 104(5): 053516

    [72] [72] Anatoliy Y. Vorobyev, Chunlei Guo. Metal colorization with femtosecond laser pulses[C]. SPIE, 2008, 7005: 70051T

    [73] [73] A. Y. Vorobyev, Chunlei Guo. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals[J]. J. Appl. Phys., 2008, 103(4): 043513

    [74] [74] Anatoliy Y. Vorobyev, Chunlei Guo. Metallic light absorbers produced by femtosecond laser pulses[J]. Adv. Mechanical Engng., 2010, 2010: 452749

    [75] [75] Anatoliy Y. Vorobyev, Chunlei Guo. Solar absorber surfaces treated by femtosecond laser[C]. Cancun: International Conference on Biosciences, 2010: 135~138

    [76] [76] A. Y. Vorobyev, V. S. Makin, Chunlei Guo. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources[J]. Phys. Rev. Lett., 2009, 102(23): 234301

    [77] [77] J. Agassi. The kirchhoff-planck radiation law[J]. Science, 1967, 156(3771): 30~37

    [78] [78] A. Y. Vorobyev, Chunlei Guo. Metal pumps liquid uphill[J]. Appl. Phys. Lett., 2009, 94(22): 224102

    [79] [79] Barada K. Nayak, Mool C. Gupta. Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation[J]. Opt. Lasers Engng., 2010, 48(10): 940~949

    [80] [80] Barada K. Nayak, Mool C. Gupta, Kurt W. Kolasinski. Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation[J]. Nanotechnology, 2007, 18(19): 195302

    [81] [81] A. Y. Vorobyev, Chunlei Guo. Femtosecond laser structuring of titanium implants[J]. Appl. Surf. Sci., 2007, 253(17): 7272~7280

    [82] [82] Anatoliy Y. Vorobyev, Chunlei Guo. Femtosecond laser surface structuring of biocompatible metals[C]. SPIE, 2009, 7203: 72030O

    [83] [83] Tae Oh Yoon, Hyun Joo Shin, Sae Chae Jeoung et al.. Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification[J]. Opt. Express, 2008, 16(17): 12715~12725

    [84] [84] Anne-Marie Kietzig, Savvas G. Hatzikiriakos, Peter Englezos. Patterned superhydrophobic metallic surfaces[J]. Langmuir, 2009, 25(8): 4821~4827

    [85] [85] A. Roy Choudhury, Tamer Ezz, Satyajit Chatterjee et al.. Microstructure and tribological behaviour of nano-structured metal matrix composite boride coatings synthesized by combined laser and sol-gel technology[J]. Surf. Coat. Technol., 2008, 202(13): 2817~2829

    CLP Journals

    [1] Hou Fang, Li Weinan, Bai Jing, Zhou Kaiming, Long Xuewen, Hui Rongqing, Zhang Xiaolin, Cheng Guanghua. Femtosecond-Laser-Written Waveguide in Magneto-Optical Glass[J]. Acta Optica Sinica, 2013, 33(3): 314002

    [2] Shang Peng, Xiong Shengming. Design and Error Analysis of Sub-Wavelength Antireflective Micro-Structure on Surface of ZnSe Substrate[J]. Chinese Journal of Lasers, 2014, 41(1): 116004

    [3] Luo Xinmin, Zhao Guangzhi, Yang Kun, Chen Kangmin, Zhang Xiaoning, Zhang Yongkang, Luo Kaiyu, Ren Xudong. Deformation Microstructure Characteristics of Commercial Pure Titanium Sheet Induced by Laser Shock Forming[J]. Chinese Journal of Lasers, 2012, 39(6): 603001

    [4] Xia Bo, Jiang Lan, Wang Sumei, Yan Xueliang, Liu Pengjun. Femtosecond Laser Drilling of Micro-Holes[J]. Chinese Journal of Lasers, 2013, 40(2): 201001

    [5] Guo Yongsheng, Sun Xiaochuan, Yang Xi, Hu Yongxiang. Fabrication and Controlling of Metal Sheets Based on Dynamic and Mechanical Effect of Laser[J]. Laser & Optoelectronics Progress, 2015, 52(8): 81402

    [6] Zhu Lidan, Sun Fangyuan, Zhu Jie, Tang Dawei. Study on Nonequilibrium Heat Transfer in Au Nano Metal Films by Femtosecond Laser Pump and Probe Method[J]. Chinese Journal of Lasers, 2012, 39(5): 507001

    [7] Wen Ya, Peng Yan, Zhang Dongsheng, Chen Hongyan, Chen Lin, Zhu Yiming. Effect of Pulse Energy of Femtosecond Laser on the Formation of Spikes on the Silicon Surface in the Ambient Gas of SF6[J]. Chinese Journal of Lasers, 2012, 39(4): 406001

    [8] Li Chen, Cheng Guanghua, Stoian Razvan. Investigation of Femtosecond Laser-Induced Periodic Surface Structure on Tungsten[J]. Acta Optica Sinica, 2016, 36(5): 532001

    Tools

    Get Citation

    Copy Citation Text

    Zhong Minlin, Fan Peixun. Applications of Laser Nano Manufacturing Technologies[J]. Chinese Journal of Lasers, 2011, 38(6): 601001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Apr. 20, 2011

    Accepted: --

    Published Online: May. 20, 2011

    The Author Email: Minlin Zhong (zhml@tsinghua.edu.cn)

    DOI:10.3788/cjl201138.0601001

    Topics