Chinese Journal of Lasers, Volume. 38, Issue 6, 601001(2011)
Applications of Laser Nano Manufacturing Technologies
[2] [2] The national matural science foundation of engineering and material science. Mechanical Engineering Discipline Development Strategy Report 2011~2020[M]. Beijing:Science Press,2010
[3] [3] D. Buerle. Laser Processing and Chemistry[M]. 3rd ed., Berlin: Springer, 2000
[4] [4] A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos et al.. Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy[J]. Appl. Phys. Lett., 2003, 82(8): 1146~1148
[5] [5] T. Tanaka, H. B. Sun, S. Kawata. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system[J]. Appl. Phys. Lett., 2002, 80(2): 312~314
[6] [6] J. D. Boor, D. K. Kim, V. Schmidt. Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd′s interferometer[J]. Opt. Lett., 2010, 35(20): 3450~3452
[7] [7] M. C. Marconi, P. C. Wachulak. Extreme ultraviolet lithography with table top lasers[J]. Progress Quantum Electron., 2010, 34(4): 173~190
[8] [8] C. S. Lim, M. H. Hong, Y. Lin et al.. Microlens array fabrication by laser interference lithography for superresolution nano patterning[J]. Appl. Phys. Lett., 2006, 89(19): 191125
[9] [9] S. C. Lo, H. N. Wang. Near-field photolithography by a fibre probe[C]. Maui: Proceedings of 1st IEEE Conference on Nanotechnology, 2001. 36~39
[10] [10] E. McLeod, C. B. Arnold. Subwavelength direct-write nanopatterning using optically trapped microspheres[J]. Nature Nanotechnology, 2008, 3(7): 413~417
[11] [11] Y. F. Lu, W. D. Song, Y. W. Zheng et al.. Laser writing of a sub-wavelength structure on silicon (100) surfaces with particle enhanced optical irradiation[J]. JETP Lett., 2000, 72(9): 457~459
[12] [12] W. Guo, Z. B. Wang, L. Li et al.. Near-field laser parallel nanofabrication of arbitrary-shaped patterns[J]. Appl. Phys. Lett., 2007, 90(24): 243101
[13] [13] W. Guo, Z. B. Wang, L. Li et al.. Laser parallel nanopatterning of lines and curves by microparticle lens arrays[J]. J. Laser Micro/Nanoengineering, 2007, 2(3): 212~215
[14] [14] J. C. Martinez-Anton. Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography[J]. J. Opt. A: Pure Appl. Opt., 2006, 8(4): S213~S218
[15] [15] W. Srituranvanich, N. Fang, C. Sun et al.. Plasmonic nanolithography[J]. Nano Lett., 2004, 4(6): 1085~1088
[16] [16] X. Luo, T. Ishihara. Subwavelength photolithography basedon surface plasmon polariton resonance[J]. Opt. Express, 2004, 12(14): 3055~3065
[17] [17] C. L. Sajti, R. Sattari, B. N. Chichkov et al... Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid[J]. J. Phys. Chem., 2009, 114(6): 2421~2427
[18] [18] W. P. Jiang, P. Molian, H. Ferkel. Rapid production of carbon nanotubes by high power laser ablation[J]. Trans. ASME J. Manuf. Sci. Engng., 2005, 127(3): 703~707
[19] [19] N. Grobert, M. Terrones, S. Trasobares et al.. A novel route to aligned nanotubes and nanofibres using laserpatterned substrates[J]. Appl. Phys. A, 2000, 70(2): 175~183
[20] [20] H. Kanzow, A. Schmalz, A. Ding. Laser-assisted production of multi-walled carbon nanotubes form acetylene[J]. Chem. Phys. Lett., 1998, 295(5-6): 525~530
[21] [21] S. Kawata, H. B. Sun, T. Tanaka et al.. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697~698
[22] [22] F. Formaneka, N. Takeyasua, T. Tanaka et al.. Three-dimenstional fabrication of metallic micro/nanostructures by two-photon polymerization for metalmaterials[C]. SPIE, 2006, 6324: 63240T
[23] [23] K. S. Lee, R. H. Kim, D. Y. Yang et al.. Advances in 3D nano/microfabrication using two-photon initiated polymerization[J]. Progress Polymer Sci., 2008, 33(6): 631~681
[24] [24] Cui Zheng. Micro-Nanofabrication Technologies and Applications[M]. 2nd ed., Beijing:Higher Education Press,2009
[25] [25] P. Ball. Reversing the prism[OL].[2008-08-11] http:∥www. nature.com/news/2008/080811/full/news.2008.1033.html
[26] [26] Justyna K. Gansel, Michael Thiel, Michael S. Rill et al.. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513~1515
[27] [27] Michael Thiel, Michael S. Rill, Georg von Freymann et al.. Three-dimensional bi-chiral photonic crystals[J]. Adv. Mater., 2009, 21(46): 4680~4682
[28] [28] Tolga Ergin, Nicolas Stenger, Patrice Brenner et al.. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337~339
[29] [29] Michael S. Rill, Christine Plet, Michael Thiel et al.. Photonic metamaterials by direct laser writing and silver chemical vapour deposition[J]. Nature Materials, 2008, 7(7): 543~546
[30] [30] Michael S. Rill, Christine E. Kriegler, Michael Thiel et al.. Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation[J]. Opt. Lett., 2009, 34(1): 19~21
[31] [31] Nanoscribe. Impressum[OL]. 2010, http://www.nanoscribe.de/
[32] [32] Arseniy I. Kuznetsov, Andrey B. Evlyukhin, Carsten Reinhardt et al.. Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications[J]. J. Opt. Soc. Am. B, 2009, 26(12): B130~B138
[33] [33] Satoshi Kawata, Takuo Tanaka, Nobuyuki Takeyasu. Two-photon fabrication of three-dimensional metamaterials[C]. Baltimore: International Quantum Electronics Conference, 2009, IThL1
[34] [34] Yaoyu Cao, Nobuyuki Takeyasu, Takuo Tanaka et al.. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction[J]. Small, 2009, 5(10): 1144~1148
[35] [35] Z. C. Chen, M. H. Hong, H. Dong et al.. Parallel laser microfabrication of terahertz metamaterialsand its polarization-dependent transmission property[J]. Appl. Phys. A, 2010, 101(1): 33~36
[36] [36] G. Parker, M. Charlton. Photonic crystals[J]. Physics World, 2000, 13(8): 29
[37] [37] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20): 2059~2062
[38] [38] J. D. Joannopoulos, P. R. Villeneuve, S. H. Fan. Photonics crystals: putting a new twist on light[J]. Nature, 1997, 386(6621): 143~147
[39] [39] S. Noda, M. Fujita, T. Asano. Spontaneous-emission control by photonic crystals and nanocavities[J]. Nat. Photon., 2007, 1(8): 449~458
[40] [40] Baohua Jia, Hong Kang, Jiafang Li et al.. Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method[J]. Opt. Lett., 2009, 34(13): 1918~1920
[41] [41] M. Farsari, A. Ovsianikov, M. Vamvakaki et al.. Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore[J]. Appl. Phys. A, 2008, 93(1): 11~15
[42] [42] Wojciech Haske, Vincent W. Chen, Joel M. Hales et al.. 65 nm feature sizes using visible wavelength 3-D multiphoton lithography[J]. Opt. Express, 2007, 15(6): 3426~3436
[43] [43] M. H. Hong, Z. Q. Huang, Y. Lin et al.. Laser precision engineering from microfabrication to nanoprocessing[C]. San Jose: Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science, 2008. 1~2
[44] [44] J. Brian Leen, Paul Hansen, Yao-Te Cheng et al.. Near-field optical data storage using C-apertures[J]. Appl. Phys. Lett., 2010, 97(7): 073111
[45] [45] Q. Xie, M. H. Hong, H. L. Tan et al.. Fabrication of nanostructures with laser interference lithography[J]. J. Alloys and Compounds, 2008, 449(1-2): 261~264
[46] [46] Matthias Wuttig, Noboru Yamada. Phase-change materials for rewriteable data storage[J]. Nature Materials, 2007, 6(11): 824~832
[47] [47] Y. Lin, M. H. Hong, G. X. Chen et al.. Hybrid laser micro/nanofabrication of phase change materials with combination of chemical processing[J]. J. Mater. Process. Technol., 2007, 192-193: 340~345
[48] [48] Y. Lin, M. H. Hong, T. C. Chong et al.. Ultrafast-laser-induced parallel phase-change nanolithography[J]. Appl. Phys. Lett., 2006, 89(4): 041108
[49] [49] Y. Lin, M. H. Hong, W. J. Wang et al.. Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser[J]. Appl. Phys. A, 2005, 80(3): 461~465
[50] [50] K. Miura, Jianrong Qiu, S. Fujiwara et al.. Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions[J]. Appl. Phys. Lett., 2002, 80(13): 2263~2265
[51] [51] E. Stratakis, A. Ranella, M. Farsari et al.. Laser-based micro/nanoengineering for biological applications[J]. Progress Quantum Electron., 2009, 33(5): 127~163
[52] [52] Boris Chichkov. Two-photon polymerization enhances rapid prototyping of medical devices[OL]. 2007 http:∥spie.org/x13541.xml ArticleI1 ID=x13541
[53] [53] K. Venkatakrishnan, S. Jariwala, B. Tan. Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate[J]. Opt. Express, 2009, 17(4): 2756~2672
[54] [54] B. Ilic, D. Czaplewski, M. Zalalutdinov et al.. Fabrication of flexible polymer tubes for micro and nanofluidic applications[J]. H. G. J. Vac. Sci. Technol. B, 2002, 20(6): 2459~2465
[55] [55] Dan V. Nicolau, Elena P. Ivanova, Florin Fulga et al.. Protein immobilisation on micro/nanostructures fabricated by laser microablation[J]. Biosensors Bioelectron., 2010, 7(44): 1337~1345
[56] [56] Esther Rebollar, Irene Frischauf, Michael Olbrich et al.. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene[J]. Biomaterials, 2008: 1796~1806
[57] [57] A. Doraiswamy, C. Jin, R. J. Narayan et al.. Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices[J]. Acta Biomater., 2006, 2(3): 267~275
[58] [58] Y. Lu, S. C. Chen. Micro and nano-fabrication of biodegradable polymers for drug delivery[J]. Adv. Drug Delivery Rev., 2004, 56(11): 1621~1633
[59] [59] Scott J. Hollister. Porous scaffold design for tissue engineering[J]. Nature Materials, 2005, 4(7): 518~524
[60] [60] E. Stratakis, A. Ranella, M. Farsari et al.. Laser-based micro/nanoengineering for biological applications[J]. Progress Quantum Electron., 2009, 33(5): 127~163
[61] [61] Wai-Yee Yeong, Chee-Kai Chua, Kah-Fai Leong et al.. Rapid prototyping in tissue engineering: challenges and potential[J]. Trends Biotechnol., 2004, 22(12): 643~652
[62] [62] T. Anderson, J. Hu, M. Ramme et al.. Integrating optics and micro-fluidic channels using femtosecond laser irradiation[C]. SPIE, 2009, 7203: 72030I
[63] [63] Thomas Woggon, Thomas Kleiner, Martin Punke et al.. Nanostructuring of organic-inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization[J]. Opt. Express, 2009, 17(4): 2500~2507
[64] [64] T. Ueda , S. Katsuki, K. Takahashi et al.. Fabrication and characterization of carbon nanotube based high sensitive gas sensors operable at room temperature[J]. Diamond Relat. Mater., 2008, 17(7-10): 1586~1589
[65] [65] S. M. Huang, Z. Sun, B.S. Luk′yanchuk et al.. Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon[J]. Appl. Phys. Lett., 2005, 86(16): 161911
[66] [66] X. C. Wang, H. Y. Zheng, C. W. Tan et al.. Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation[J]. Appl. Phys. Lett., 2010, 96(8): 084101
[67] [67] A. Y. Vorobyev, Chunlei Guo. Enhanced absorptance of gold following multipulse femtosecond laser ablation[J]. Phys. Rev. B, 2005, 72(19): 195422
[68] [68] Anatoliy Y.Vorobyev, Chunlei Guo. Change in absorptance of metals following multi-pulse femtosecond laser ablation[J]. J. Phys.: Conf. Ser., 2007, 59(59): 579~584
[69] [69] A. Y. Vorobyev, Chunlei Guo. Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals[J]. Appl. Phys. A, 2007, 86(3): 321~324
[70] [70] A. Y. Vorobyev, Chunlei Guo. Colorizing metals with femtosecond laser pulses[J]. Appl. Phys. Lett., 2008, 92(4): 041914
[71] [71] A. Y. Vorobyev, Chunlei Guo. Femtosecond laser blackening of platinum[J]. J. Appl. Phys., 2008, 104(5): 053516
[72] [72] Anatoliy Y. Vorobyev, Chunlei Guo. Metal colorization with femtosecond laser pulses[C]. SPIE, 2008, 7005: 70051T
[73] [73] A. Y. Vorobyev, Chunlei Guo. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals[J]. J. Appl. Phys., 2008, 103(4): 043513
[74] [74] Anatoliy Y. Vorobyev, Chunlei Guo. Metallic light absorbers produced by femtosecond laser pulses[J]. Adv. Mechanical Engng., 2010, 2010: 452749
[75] [75] Anatoliy Y. Vorobyev, Chunlei Guo. Solar absorber surfaces treated by femtosecond laser[C]. Cancun: International Conference on Biosciences, 2010: 135~138
[76] [76] A. Y. Vorobyev, V. S. Makin, Chunlei Guo. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources[J]. Phys. Rev. Lett., 2009, 102(23): 234301
[77] [77] J. Agassi. The kirchhoff-planck radiation law[J]. Science, 1967, 156(3771): 30~37
[78] [78] A. Y. Vorobyev, Chunlei Guo. Metal pumps liquid uphill[J]. Appl. Phys. Lett., 2009, 94(22): 224102
[79] [79] Barada K. Nayak, Mool C. Gupta. Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation[J]. Opt. Lasers Engng., 2010, 48(10): 940~949
[80] [80] Barada K. Nayak, Mool C. Gupta, Kurt W. Kolasinski. Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation[J]. Nanotechnology, 2007, 18(19): 195302
[81] [81] A. Y. Vorobyev, Chunlei Guo. Femtosecond laser structuring of titanium implants[J]. Appl. Surf. Sci., 2007, 253(17): 7272~7280
[82] [82] Anatoliy Y. Vorobyev, Chunlei Guo. Femtosecond laser surface structuring of biocompatible metals[C]. SPIE, 2009, 7203: 72030O
[83] [83] Tae Oh Yoon, Hyun Joo Shin, Sae Chae Jeoung et al.. Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification[J]. Opt. Express, 2008, 16(17): 12715~12725
[84] [84] Anne-Marie Kietzig, Savvas G. Hatzikiriakos, Peter Englezos. Patterned superhydrophobic metallic surfaces[J]. Langmuir, 2009, 25(8): 4821~4827
[85] [85] A. Roy Choudhury, Tamer Ezz, Satyajit Chatterjee et al.. Microstructure and tribological behaviour of nano-structured metal matrix composite boride coatings synthesized by combined laser and sol-gel technology[J]. Surf. Coat. Technol., 2008, 202(13): 2817~2829
Get Citation
Copy Citation Text
Zhong Minlin, Fan Peixun. Applications of Laser Nano Manufacturing Technologies[J]. Chinese Journal of Lasers, 2011, 38(6): 601001
Category: laser devices and laser physics
Received: Apr. 20, 2011
Accepted: --
Published Online: May. 20, 2011
The Author Email: Minlin Zhong (zhml@tsinghua.edu.cn)