Matter and Radiation at Extremes, Volume. 6, Issue 6, 064401(2021)
Commissioning experiment of the high-contrast SILEX-Ⅱ multi-petawatt laser facility
[1] G.Mourou, D.Strickland. Compression of amplified chirped optical pulses. Opt. Commun., 56, 219-221(1985).
[2] C.Danson, D.Hillier, N.Hopps et al. Petawatt class lasers worldwide. High Power Laser Sci. Eng., 3, E3(2015).
[3] J.Bromage, C. N.Danson, C.Haefner et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng., 7, E54(2019).
[4] H.Kiriyama, M.Nishiuchi, A. S.Pirozhkov et al. High-contrast high-intensity repetitive petawatt laser. Opt. Lett., 43, 2595(2018).
[5] Y.Fukuda, M.Nishiuchi, A. S.Pirozhkov et al. Approaching the diffraction-limited, bandwidth-limited Petawatt. Opt. Express, 25, 20486(2017).
[6] Z.Gan, W.Li, L.Yu et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility. Opt. Lett., 43, 5681-5684(2018).
[7] K. N.Hatsagortsyan, K. N.Muller, A. D.Piazza. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys., 84, 1177(2012).
[8] H. S.Peng, W. Y.Zhang, X. M.Zhang et al. Progress in ICF programs at CAEP. Laser Part. Beams, 23, 205-209(2005).
[9] S.Jingqin, Z.Kainan, Z.Qihua et al. The Xingguang-III laser facility: Precise synchronization with femtosecond, picosecond and nanosecond beams. Laser Phys. Lett., 15, 015301(2018).
[10] X.Zeng, K.Zhou, Y.Zuo et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification. Opt. Lett., 42, 2014-2017(2017).
[11] X.Huang, X.Zeng, K.Zhou et al. Improvement of focusing performance for a multi-petawatt OPCPA laser facility. Laser Phys., 28, 125301(2018).
[12] S.Feldman, J.Kern, I.Kim et al. Simultaneous imaging of K-α radiation and coherent transition radiation from relativistic-intensity laser-irradiated solid target plasmas. High Energy Density Phys., 8, 60-65(2012).
[13] T.Sato, K. A.Tanaka, J.Zheng et al. Study of hot electrons by measurement of optical emission from the rear surface of a metallic foil irradiated with ultraintense laser pulse. Phys. Rev. Lett., 92, 165001(2004).
[14] Y.-T.Li, G.-Q.Liao, Y.-H.Zhang et al. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions. Phys. Rev. Lett., 116, 205003(2016).
[15] J.Faure, Y.Glinec, A.Norlin et al. Observation of fine structures in laser-driven electron beams using coherent transition radiation. Phys. Rev. Lett., 98, 194801(2007).
[16] T.Feurer, W.Theobald, L.Veisz et al. Three-halves harmonic emission from femtosecond laser produced plasmas with steep density gradients. Phys. Plasmas, 11, 3311(2004).
[17] Y.He, W.Hong, J.Hua et al. Measuring fluence distribution of intense short laser based on the radiochromic effect. Opt. Lett., 46, 2795-2798(2021).
[18] W. L.Kruer, M.Tabak, S. C.Wilks et al. Absorption of ultra-intense laser pulses. Phys. Rev. Lett., 69, 1383(1992).
[19] F. N.Beg, A. R.Bell, A. E.Dangor et al. A study of picosecond laser-solid interactions up to 1019 W cm−2. Phys. Plasmas, 4, 447-457(1997).
[20] C. D.Chen, D. S.Hey, P. K.Patel et al. Bremsstrahlung and
[21] H.Chen, W. L.Kruer, S. C.Wilks et al. Hot electron energy distributions from ultraintense laser solid interactions. Phys. Plasmas, 16, 020705(2009).
[22] F. N.Beg, M. G.Haines, M. S.Wei et al. Hot-electron temperature and laser-light absorption in fast ignition. Phys. Rev. Lett., 102, 045008(2009).
[23] T.Cowan, A.Debus, T.Kluge et al. Electron temperature scaling in laser interaction with solids. Phys. Rev. Lett., 107, 205003(2011).
[24] M.Sherlock. Universal scaling of the electron distribution function in one-dimensional simulations of relativistic laser-plasma interactions. Phys. Plasmas, 16, 103101(2009).
[25] A. J.Kemp, Y.Sentoku, M.Tabak. Hot-electron energy coupling in ultraintense laser-matter interaction. Phys. Rev. E, 79, 066406(2009).
[26] H.Daido, M.Nishiuchi, A. S.Pirozhkov. Review of laser-driven ion sources and their applications. Rep. Prog. Phys., 75, 056401(2012).
[27] M.Borghesi, A.Macchi, M.Passoni. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys., 85, 751-793(2013).
[28] T. E.Cowan, A. B.Langdon, S. C.Wilks et al. Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas, 8, 542(2001).
[29] S. P.Hatchett, M. H.Key, R. A.Snavely et al. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett., 85, 2945-2948(2000).
[30] P.Mora. Thin-foil expansion into a vacuum. Phys. Rev. E, 72, 056401(2005).
[31] S.Kar, A. P. L.Robinson, M.Zepf et al. Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys., 10, 013021(2008).
[32] M.Borghesi, S. V.Bulanov, T.Esirkepov et al. Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett., 92, 175003(2004).
[33] R. J.Gray, A.Higginson, M.King et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun., 9, 724(2018).
[34] G. E.Cochran, L.Obst, P. L.Poole et al. Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime. New J. Phys., 20, 013019(2018).
[35] A. A.Andreev, D.Doria, R.Prasad et al. Fast ion acceleration from thin foils irradiated by ultra-high intensity, ultra-high contrast laser pulses. Appl. Phys. Lett., 99, 121504(2011).
[36] D.Doria, R.Prasad, S.Ter-Avetisyan et al. Proton acceleration using 50 fs, high intensity ASTRA-Gemini laser pulses. Nucl. Instrum. Methods Phys. Res., Sect. A, 653, 113-115(2011).
[37] J.Fuchs, S.Gaillard, N.Renard-Le Galloudec et al. Study of saturation of CR39 nuclear track detectors at high ion fluence and of associated artifact patterns. Rev. Sci. Instrum., 78, 013304(2007).
[38] G. A.Becker, S.Keppler, S.Tietze et al. Ring-like spatial distribution of laser accelerated protons in the ultra-high-contrast TNSA-regime. Plasma Phys. Controlled Fusion, 60, 055010(2018).
[39] A. J.Mackinnon, P. K.Patel, Y.Sentoku et al. Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett., 88, 215006(2002).
[40] D.Kumar, S.Singh, M.Smid et al. Alignment of solid targets under extreme tight focus conditions generated by an ellipsoidal plasma mirror. Matter Radiat. Extremes, 4, 024402(2019).
[41] S.Buffechoux, A.Kon, M.Nakatsutsumi et al. Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity. Opt. Lett., 35, 2314-2316(2010).
Get Citation
Copy Citation Text
Wei Hong, Shukai He, Jian Teng, Zhigang Deng, Zhimeng Zhang, Feng Lu, Bo Zhang, Bin Zhu, Zenghai Dai, Bo Cui, Yuchi Wu, Dongxiao Liu, Wei Qi, Jinlong Jiao, Faqiang Zhang, Zuhua Yang, Feng Zhang, Bi Bi, Xiaoming Zeng, Kainan Zhou, Yanlei Zuo, Xiaojun Huang, Na Xie, Yi Guo, Jingqin Su, Dan Han, Ying Mao, Leifeng Cao, Weimin Zhou, Yuqiu Gu, Feng Jing, Baohan Zhang, Hongbo Cai, Minqing He, Wudi Zheng, Shaoping Zhu, Wenjun Ma, Dahui Wang, Yinren Shou, Xueqing Yan, Bin Qiao, Yi Zhang, Congling Zhong, Xiaohui Yuan, Wenqing Wei. Commissioning experiment of the high-contrast SILEX-Ⅱ multi-petawatt laser facility[J]. Matter and Radiation at Extremes, 2021, 6(6): 064401
Category: Fundamental Physics At Extreme Light
Received: May. 31, 2020
Accepted: Sep. 15, 2021
Published Online: Dec. 7, 2021
The Author Email: Wei Hong (jminhong@126.com)